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ABSTRACT: 
A data mining method for synthesizing multiple time series is presented. Based 
on a single time series algorithm, the method embeds multiple time series into a 
phase space. The reconstructed state space allows temporal pattern extraction 
and local model development. Using an a priori data mining objective, an 
optimal local model is chosen for short-term forecasting. For the same sampling 
period, multiple time series embedding produces better temporal patterns than 
single time series embedding. The method is applied to a financial time series. 
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 Time series analysis is fundamental to engineering and scientific endeavors. 
Researchers study nature as it  evolves through time, hoping to develop models useful for 
predicting or controlling it. Data mining is the analysis of data with the goal of uncovering 
hidden patterns. It encompasses a set of methods that automate the scientific discovery 
process. Its uniqueness is found in the types of problems addressed - those with large 
data sets and complex, hidden relationships. 
 Traditional time series analysis methods such as the Box-Jenkins method 
(Bowerman and O'Connell 1993) are limited by the requirement of stationarity of the time 
series and normality and independence of the residuals. However, for most real world 
time series, these conditions are not met. One of the most severe drawbacks of this 
approach is its inability to identify complex characteristics. These drawbacks of the Box-
Jenkins method occur because it tries to characterize and predict all points in a time 
series. 
 This work applies data mining concepts to time series analysis. In particular, it 
establishes a method that uncovers hidden patterns in time series data. This novel 
approach overcomes the limitations of previous time series analysis methods by finding 
temporal patterns. Previous work (Povinelli and Feng 1998) found optimal local models 
for event (important occurrence localized in time) characterization and prediction, using a 
single time series to recreate an attractor. This paper looks at embedding multiple time 
series – a process analogous to having multiple sensors on a system. 
 The method is capable of handling nonstationary, nonperiodic, irregular time series, 
including chaotic deterministic time series. It is applicable to time series that appear 
stochastic, but occasionally (though not necessary periodically) contain distinct patterns 
that are characteristic and predictive of the desired events. This might include predicting 
when a droplet from a welder will release, when a device will fail, when a stock price will 
drop, when an earthquake will strike, or when the heart will go into fibrillation. 
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Figure 1- Training Time Series 
 
 
 This research is the combination of ideas from several fields. It incorporates 
concepts from data mining, time series analysis, wavelets, genetic algorithms, and 
dynamical systems. From wavelets comes the idea of a temporal pattern. From genetic 
algorithms comes a robust and easily applied optimization method (Goldberg 1989, pp. 
106-120). From the study of dynamical systems comes the theoretical justification of the 
method, specifically Takens’ Theorem (Takens 1980) and Sauer's extension (Sauer et al. 
1991). 

PROBLEM STATEMENT 
 Graphically, the problem can be understood by studying Figure 1, which shows a 
synthetic, nonstationary, non-periodic time series. 
 The squares indicate observations that are deemed important – events. The goal is to 
characterize and predict events in the time series. To make the time series more concrete, 
consider it a measure of seismic activity with events being those points over 4.5. The 
method aims to characterize when peak seismic activity (earthquakes) occurred and then 
use the characterizations for prediction. 
 Mathematically the problem is defined as follows. For a training time series 
X={xt,t=1,…,N} and a testing time series Y={xt,t=R,…,S} R>N, define, a priori, an 
application dependent event function, g(xt). The goal is to identify and characterize a 
subset Xevents of X where, Xevents has the following properties. First, a characteristic 
function exists which allows the separation of Xevents from c

eventsX , the complement of 
Xevents. The characteristic function encapsulates the features or patterns that distinguish 
events from non-events. Second, the mean of g(Xevents) is greater than the mean of 

( )c
eventsg X . Third, Xevents is statistically different from c

eventsX  and X. 
 The method seeks to apply the features to predicting events in Y, the test time series. 
The aim is to predict a subset Yevents of Y, where the mean of g(Yevents) is greater than the 
mean of ( )c

eventsg Y , and Yevents is statistically different from c
eventsY  and Y. 

SOLUTION PROCEDURE 
 The key to the new approach is that it forgoes the need to characterize and predict at 
all times for the advantages of being able to identify the "optimal" local model for 
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characterizing and predicting important events. The solution procedure involves a 
transformation from the time series space to a phase space. In the phase space, a 
clustering algorithm is applied. The goal is to find the optimal temporal pattern that 
characterizes and predicts events. 
 The key components of the method are the event function, time series space, phase 
space, temporal pattern, and temporal pattern cluster. The event function assigns an 
“eventness” to every observation. The time series space is a two-dimensional space of 
time and magnitude. 
 The phase space is a mapping, 2 m Q⋅→¡ ¡ , from the time series space into an m·Q 
dimensional metric space. At the core of the method is the temporal pattern, an m·Q 
dimensional vector. It is the data mining indicator, allowing the characterization and 
prediction of events. The final component, the temporal pattern cluster, is defined using 
the phase space metric, the temporal pattern, and a threshold δ. The temporal pattern 
cluster is a hypersphere centered on the temporal pattern with a radius δ. 
 Given m training time series X1, X2, …, Xm where each time series takes the form 
Xm={xm,t,t=1,…,N},

 
and m test time series Y1, Y 2, …, Ym which take the form 

Ym={xm,t,t=R,…,S} R>N,
 
a phase space is formed. The phase space is an m·Q dimensional 

real space P ⊆ ¡m·Q with metric d. The time series are embedded into the phase space 
yielding xt as follows 
 

( )1 1 1 11, , 1, , 1, , 1, , , , , , , , , , 1, , 1
Q Q

T
t t N t t N t t N t Qx x x x x x t Nτ τ τ τ τ

− −− − − − −= = + −x … … … … … , 

 
where 11 2 Qτ τ τ −< < <… . In a similar manner, the test time series are embedded yielding 
yt. 
 The time series magnitudes may be normalized to assist the optimization routines. 
Normalization does not change the topology of the phase space, but giving each time 
series the same range allows similar search step sizes for each phase space dimension. The 
normalization constant is retained for use in predicting events in the testing time series. 
 An a priori, application dependent event function, g(xt), is defined. The method 
finds a pattern cluster, defined by the temporal pattern p ∈ P and δ ∈ ¡, that has the 
following two properties. Several definitions are needed to describe the properties. The 
first is the index sets Mtrain and Mtest which are the times t when xt and yt, respectively, are 
within the temporal pattern cluster.  
 

( ){ } 1: , ,       1, , 1train t QM t d t Nδ τ −= ≤ = + −p x … . 

( ){ } 1: , ,       , , 1test t QM t d t R Sδ τ −= ≤ = + −p y … . 

 
The second definition is the average event value of the times in M. 
 

( )
( )1

M t
t M

g x
c M

µ
∈

= ∑ , 

 
where c(M) is the cardinality of M. The average event values of all times µX and µY are 
defined as follows: 
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Property 1, which is for the training time series, requires that trainM Xµ µ>  and that the 
set {g(xt): t ∈ Mtrain} is statistically different from the set {g(xt): t = τQ-1+1,…,N-1}. 
Property 2, which is for the test time series, requires that testM Xµ µ>

 
and that the set 

{g(xt): t ∈ Mtest} is statistically different from the set {g(xt): t = R … S-Q+1}. 
 This is all accomplished by 
 

( )
( )

( )

( )

1
maximize , , ,

,

subject to ,  0 1.

train

train

M t
t Mtrain

train

f X g g x
c M

c M N

δ µ
δ

β β
∈

≡ =

> < ≤

∑p
p . 

 
The “subject to” allows a β to be selected so that c(M) is non-trivial, i.e., so that the 
neighborhood around p includes some percentage of the total embedded time series. If β = 
0 then c(M) = 1 or all elements of M are identical. 

APPLICATIONS AND RES ULTS 
 The method is applied to daily open price and volume data of ICN, a NYSE traded 
stock, from 1990 and 1991 as shown in Figure 2. The time series were filtered to provide 
the daily percentage change in open price and in volume. For this type of time series, the 
filtering facilitates temporal pattern identification. The training results are shown in Table 
1 and Table 3. The test results are shown in Table 2 and Table 4.  
 The statistical test used to show the significance of the results is the runs test. The 
test hypothesis is  
 
 
 

Figure 2 – ICN Daily Open Price and Volume for 1990 – 1991 
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H0: There is no difference between the matched time series and the 
remaining time series. 

HA: There is significant difference between the matched time series and 
the remaining time series. 

The test uses a 1% probability of Type I error (α = 0.01). The null hypothesis can be 
rejected in almost all cases. 
 
 

Table 1 – Training Results for ICN, First Half 1990 

    Open Price Open Price and Volume 

Q c(xt)  µX σX c(M) µM σM α runs c(M) µM σM α runs 

1 123 -0.17% 4.3% 8 5.4% 8.7% 1.4x10-26 6 7.2% 9.5% 1.5x10-17 

3 121 -0.18% 4.3% 10 3.5% 7.0% 3.4x10-14 7 4.9% 7.7% 5.9x10-3 

5 119 -0.18% 4.4% 7 6.5% 7.5% 6.5x10-3 6 8.0% 7.2% 7.0x10-4 

 
 
 Table 1 provides the training results for the first half of the trading days in 1990. For 
the training phase, all temporal pattern clusters are significant. By comparing the µM of 
both the single and multiple methods, it can be seen that the multiple method has 
identified better patterns in all cases. The requirements set forth by Property 1 have been 
met. 
 
 

Table 2 – ICN Testing Results, First Half 1990 Patterns Applied to Second Half 
1990 

    Open Price Open Price and Volume 

Q c(xt)  µX σX c(M) µM σM α runs c(M) µM σM α runs 

1 124 -0.10% 5.6% 13 4.2% 9.6% 2.0x10-27 12 5.2% 9.1% 2.4x10-27 

3 122 -0.04% 5.7% 16 1.0% 8.4% 7.8x10-5 7 3.1% 10.7% 5.6x10-3 

5 120 -0.07% 5.7% 12 2.0% 9.6% 1.7x10-2 6 4.4% 12.6% 5.5x10-1 

 
 
 Table 2 shows the application of the patterns learned from the first half of 1990 time 
series to the prediction of events in the second half of 1990. All but two temporal pattern 
clusters meet Property 2 – the predicted events are greater than the average and the sets 
are statistically different. Again, the multiple time series method outperforms the single 
time series method. 
 
 

Table 3 – Training Results for ICN, First Half 1991 

    Open Price Open Price and Volume 

Q c(xt)  µX σX c(M) µM σM α runs c(M) µM σM α runs 

1 122 0.62% 4.8% 7 4.6% 3.6% 1.5x10-15 7 5.8% 5.0% 6.6x10-6 

3 120 0.63% 4.9% 8 4.4% 9.5% 1.9x10-4 7 10.5% 6.9% 6.3x10-10 

5 118 0.68% 4.9% 6 5.5% 10.1% 8.4x10-8 6 9.9% 7.9% 7.5x10-4 
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 Table 3 provides the training results for the first half of 1991. All temporal pattern 
clusters meet Property 1. The multiple time series method outperforms the single time 
series method. 
 
 

Table 4 – ICN Testing Results, First Half 1991 Patterns Applied to Second Half 
1991 

    Open Price Open Price and Volume 

Q c(xt)  µX σX c(M) µM σM α runs c(M) µM σM α runs 

1 125 1.1% 5.7% 13 2.1% 7.2% 2.4x10-25 9 5.1% 8.0% 3.7x10-1 

3 123 1.2% 5.8% 7 0.5% 5.1% 3.0x10-1 6 1.3% 15.1% 5.4x10-4 

5 121 1.0% 5.7% 7 0.9% 11.9% 3.0x10-1 4 6.4% 11.9% 6.9x10-1 

 
 
 Table 4 shows the application of the patterns learned from the first half of 1991 time 
series to the prediction of events in the second half of 1991. All temporal pattern clusters 
outperform the average “eventness”. Two temporal pattern clusters are statistically 
significant. The multiple time series method outperforms the single time series method. 

CONCLUSIONS 
 In this paper, the time series data mining method is extended to multiple time series. 
Using temporal pattern clusters from multiple time series as a data mining tool has 
yielded meaningful results. Instead of modeling the time series everywhere, the method 
matches only when there is a high similarity between the temporal pattern cluster and the 
time series. To find such temporal pattern clusters, a genetic algorithm is used. Even with 
a complex, non-stationary time series like stock price and volume, the method uncovered 
patterns that were both characteristic and predictive. 
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