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ABSTRACT 
This paper presents the results from characterizing and predicting the release of 
droplets of metal from a welder. The welding process joins two pieces of metal 
into one by making a joint between them. An arcing current melts the tip of a 
wire, forming a metal droplet that elongates until it releases. The goal is to 
predict the moment when a droplet will release, which can improve the quality 
of the joint by allowing the droplet releases to be monitored and controlled. 
Because of the irregular, chaotic, and event nature of the droplet release, 
prediction is impossible using traditional time series methods. Using Time 
Series Data Mining techniques allows the droplet releases to be predicted with 
a high degree of accuracy. 

The Time Series Data Mining (TSDM) framework (Povinelli 1999; Povinelli and 
Feng 1998; Povinelli and Feng 1999) is applied to the prediction of welding droplet 
releases. Methods based on the TSDM framework are able to successfully characterize 
and predict complex, nonperiodic, irregular, and chaotic time series such as the release of 
metal droplets from a welder. 

This paper, which is divided into three sections, presents the results of applying the 
TSDM framework to this problem. The first section discusses the welding problem1. The 
second section reviews the key TSDM concepts and an extension of the TSDM 
framework to multiple temporal patterns. The third section presents the prediction results. 

PROBLEM STATEMENT 
Welding joins two pieces of metal by forming a joint between them. As illustrated in 

Figure 1, a current arc is created between the welder and the metal to be joined. Wire is 
pushed out of the welder. The tip of the wire melts, forming a metal droplet that elongates 
(sticks out) until it releases. Predicting when a droplet of metal will release from a welder 
allows the quality of the metal joint to be monitored and controlled. The problem is to 
predict the releases { }, 1,tY y t N= = � , where t is a time index, and N is the number of 
observations, using the stickout { }, 1,tX x t N= = �  time series. This time series is a 
                                                           
1 Drs. C. Tolle, E. Larsen, D. Pace, and D. Iosty of INEEL gathered the data used in this paper. 
Their work was supported by the U.S. Department of Energy, Office of Science, Office of Basic 
Energy Sciences, Division of Materials and Materials Engineering, under DOE Idaho Operations 
Office Contract DE-AC07-94ID13223. 



 

 

measure of the droplet elongation. Because of the irregular, chaotic, and noisy nature of 
the droplet release, prediction is impossible using traditional time series methods. 
 

Figure 1 – Welding Process 

A sample of the stickout time series is illustrated in Figure 2. An electronic camera 
on the welding station measures the droplet stickout in pixels. It is sampled at 1kHz and 
comprised of approximately 5,000 observations. The release time series, also illustrated 
in Figure 2, indicates the release of a droplet (event) with a one and a non-release (non-
event) with a zero. It is synchronized with the stickout time series. 

 

Figure 2 – Welding Stickout and Release Time Series 

TIME SERIES DATA MINING METHOD 
Previous work (Povinelli 1999; Povinelli and Feng 1998; Povinelli and Feng 1999) 

presented the TSDM framework. Here the TSDM method for identifying multiple 
temporal pattern clusters is discussed. 

The TSDM method discussed here discovers hidden temporal patterns (vectors of 
length Q) characteristic of events (important occurrences) by time-delay embedding 
(Abarbanel 1996; Iwanski and Bradley 1998; Tolle 1997; Tolle and Gundersen 1998) an 
observed time series X into a reconstructed phase space, here simply called phase space. 
An event characterization function g is used to represent the eventness of a temporal 
pattern. An augmented phase space is formed by extending the phase space with g. The 
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augmented phase space is searched for a collection �  of temporal pattern clusters P that 
best characterizes the desired events. The temporal pattern clusters are then used to 
predict events in a testing time series. Figure 3 presents a block diagram of the TSDM 
method. 

 

Figure 3 – Block Diagram of TSDM Method 

Given a TSDM goal (predict droplet releases), observed time series X with events Y 
to be characterized, and a testing time series { }, , ,tZ x t R S N R S= = < <�  with 
events { }, , ,tW y t R S= = �  to be predicted, the steps in the TSDM method are: 
I. Training Stage (Batch Process) 

1. Frame the TSDM goal in terms of the event characterization function, objective 
function, and optimization formulation. 
a. Define the event characterization function, g. For this problem ( ) 1tg t y += , 

which allows characterization of droplet releases one time step in advance. 
b. Define the objective function, 1f . For this problem 

( ) ( ) ( )1 p n p n p nf t t t t f f= + + + +� , which has an optimal value when 
every event is correctly predicted. The values , , ,and p n p nt t f f  are 
described in Table 1. 

 
Table 1 – Event Categorization 

 Actually an event Actually a non-event 
Categorized as an event True positive, pt  False positive, pf  

Categorized as a non-event False negative, nf True negative, nt  

 
c. Define the criteria to accept a temporal pattern cluster. For this problem 

( ) ( )2 p p pf P t t f= + , called the positive accuracy, must be greater than a 
threshold. It defines how well a temporal pattern cluster is at avoiding 
false positives.  

d. Define the optimization formulation. The optimization formulation for the 
whole training stage is ( )max f �  subject to ( )min c � . The optimization 
formulation for the intermediate steps is ( )max f P . 

2. Determine the range of Q’s, i.e., the dimensions of the phase spaces and the 
length of the temporal patterns. 
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3. Embed the observed time series into the phase space using the time-delayed 
embedding process.  

4. Associate with each time index in the phase space an eventness represented by 
the event characterization function. Form the augmented phase space. 

5. Search, using a modified simple GA (Povinelli 2000), for the optimal collection 
of temporal pattern clusters in the augmented phase space using the following 
algorithm.  
a. if the temporal pattern cluster meets the criteria set in 1.c then, repeat step 

5 after removing the clustered phase space points from the phase space.  
b. elseif the range of Q is not exceeded, increment Q and goto step 2. 
c. else goto step 6. 

6. Evaluate training stage results. Repeat training stage as necessary. 
II. Testing Stage (Real Time or Batch Process) 

1. Embed the testing time series into the phase spaces. 
2. Apply the collection of temporal pattern clusters to predict events. 
3. Evaluate testing stage results. 

 
 The search in step I.5  

WELDING APPLICATIONS 
The stickout time series X consists of the 4,985 equally sampled observations, from t 

= 175 through 5,159. The observed stickout time series consists of t = 175 through 2,666, 
while the testing time series consists of t = 2,667 through 5,159. Figure 4 illustrates both 
the observed and testing stickout time series, while the previously shown Figure 2 
provides a detailed view of a sample of the time series. 

Figure 4 – Stickout Time Series 

Besides the obvious nonperiodic oscillations, the stickout time series exhibits a 
large-scale trend. Removing the trend helps the method find the necessary temporal 
patterns. A first difference filter could be applied, but that would introduce a 
synchronization problem between the release and stickout time series. Instead, a 
recalibration rule is used to remove the trend: when there is a 10-pixel drop between two 
consecutive observations, the second observation is recalibrated to zero.  
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Figure 5 presents an illustrative augmented phase space. The events are inseparable 
from the non-events using a two-dimensional phase space. Hence, the TSDM method, 
which finds multiple temporal clusters of varying dimensionality, is applied. 

Figure 5 – Stickout and Release Augmented Phase Space (Observed) 

The augmented phase space is searched using a tournament genetic algorithm. Two 
parameter sets are used for the genetic algorithm. For both sets, the population size was 
30; the elite count was one; the gene length was eight; and the tournament size was two. 
The first parameter set had a mutation rate of 0% and convergence criterion of 0.65. The 
second set had mutation rate of 0.05% and a convergence criterion of 0.50. The results of 
the search are shown in Table 2. In the observed time series there are 154 droplet releases 
and 2,491 total observations. 

 
Table 2 – Recalibrated Stickout and Release Results (Observed) 

 Actually an event Actually a non-event 
Categorized as an event 101pt =  41pf =  

Categorized as a non-event 53pf =  2303pt =  

 
Fourteen temporal pattern clusters form the temporal pattern cluster collection 

employed to identify events. This collection contains temporal pattern clusters that vary 
in dimension from 1 to 14. The release observations are correctly characterized 96.23% 
overall and events are correctly categorized as events 71.13%. 

The testing time series is shown in Figure 4. The test time series is recalibrated using 
the same process as for the observed time series. 

The results of applying the temporal pattern cluster collection to the testing time 
series are seen in Table 3. As with the training stage results, the testing stage results have 
high prediction accuracy of 96.43% and positive accuracy of 73.53%. These results are 
better than those found in the training phase. 

 



 

 

Table 3 – Recalibrated Stickout and Release Results (Testing) 
 Actually an event Actually a non-event 

Categorized as an event 100pt =  36pf =  
Categorized as a non-event 53pf =  2296pt =  

 
Reviewing the stickout time series in Figure 4, it can be seen that these results are 

quite good. The results from this paper can be applied to improving welds in two ways. 
The first is by being able to tell how many droplets have been laid down on the welding 
seam. In this case, the accuracy increases since the false positives almost evenly balance 
out the false negatives. Such a system would report that 136 droplets have been released 
vs. the actual 153 droplets released. The second mechanism would be by using the 
prediction as an input to a control system. 

Future work will involve improving the accuracy by using a system identification 
approach. This approach will identify rather than predict droplet releases. In addition, two 
other data sources are available – current and voltage – to improve accuracy. Alternative 
eventness functions also can be employed to improve accuracy. One example is an event 
function that characterizes all events one to five time steps ahead instead of in just one 
time step ahead. 

To conclude, using the droplet stickout as measured by an electronic camera the 
releases of welding droplets was predicted with 96.34% total prediction accuracy and 
73.53% positive prediction accuracy. These results show that the TSDM method can be 
used in a system to control and monitor the welding seam thereby improving the quality 
of the weld. 
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