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ABSTRACT 
A new method that quantifies the genetic programming predictability of a 
stock’s price is presented. This new method overcomes resolution and 
stationarity problems presented in previous approaches. A comparison, 
showing the advantages of the new method, is made, between the approaches, 
on four time series. 

INTRODUCTION 
Time series predictability is a measure of how well future values of a time 

series can be forecasted. Measuring the predictability of a time series is 
important because it can tell whether a time series can be predicted before 
making a prediction. Therefore prediction of time series with low predictability, 
such as a random walk time series, can be avoided. A good measure of time 
series predictability also provides a measure of confidence in the accuracy of a 
prediction. This is especially helpful to minimize the risk when making an 
investment decision. 

After a brief background review, the previous approach in this area is 
introduced. Some disadvantages of this approach are then discussed, and a new 
modified method that aims at overcoming these disadvantages is presented and 
tested. 
BACKGROUND 

Modeling tools play an important role in estimating times series 
predictability. Evolutionary computation approaches provide effective tool for 
such modeling. These approaches include genetic algorithms (GA) [1], which 
are based on reproduction, recombination and selection of the fittest members in 
an evolving population of candidate solutions. Koza [2] extended this genetic 
model of learning into the space of programs and thus introduced the concept of 
genetic programming (GP). Each solution in the search space is represented by a 
genetic program. Genetic programming is now widely recognized as an effective 
search paradigm in many areas including artificial intelligence, databases, 
classification, and robotics. 

There has been extensive work in the area of time series modeling using 
GP. Fogel and Fogel [3] added noise to data generated by the Lorenz system and 
the logistic map. As expected, using GP, they found that signals with no noise 
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are more predictable than noisy ones. Kaboudan [4] applied GP to estimate the 
predictability of stock price time series. The advantages of GP include its ability 
to evolve arbitrarily complex equations not requiring an a priori model, and its 
flexibility in selecting the terminal and function sets to fit different kinds of 
problems. GP has been widely recognized as an effective time series modeling 
method [3-6].  

An η -metric was introduced by Kaboudan [6], which measures the 
probability that a time series is GP-predictable. By design, the computed metric 
should approach zero for a complex signal that is badly distorted by noise. 
Alternatively, the computed metric should approach one for a time series with 
low complexity and strongly deterministic signal.  

This metric is based on comparing two outcomes: the best fit model 
generated from a single data set before shuffling with the best fit model from the 
same set after shuffling. The shuffling process is done by randomly scrambling 
the sequence of an observed data set using Efron’s bootstrap method [7]. 
Specifically, the unexplained variations, which are measured by the sum of 
squared error (SSE) before and after shuffling of a time series { , 

, are compared. The unexplained variation in {  before shuffling 
is  

}tY
N,,2,1 " }tY

tŶ t
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where  is the predicted Y . Shuffling increases the unexplained variation in 
 to a maximum [1]. This maximum is  
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where {  is the shuffled { . The measure of predictability is then defined 
as:  
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Thus, if the time series {  is a totally deterministic signal and can be modeled 
perfectly, then SSE  and 

}tY
0=Y 1=η . If it is totally unpredictable noise, the 

reshuffling shouldn’t affect the learned GP model accuracy, hence 
 and SY SSE=SSE 0=η .  

METHODS 
While applying the η -metric to estimate stock price predictability, two 

main problems have been observed. First, the value of the metric depends on the 
length of the time series. Specifically, the η  calculated for a 50 day stock price 
time series will be much larger than the η  calculated from a 20 day stock price 
time series that is a subsequence of the 50 day series. Does this mean that a 
longer time series is more predictable? Of course not. In fact, there is evidence 
that longer stock price time series are closer to a random walk than shorter ones 
[5]. The source of this effect is mainly due to the nonstationarity of stock price 
time series. The nonstationarity becomes more evident as the sample size 
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increases. The second problem is a derivation of the first one. Since the η  
increases when the time series is longer, and its value has an upper bound of 
one, the value of the η -metric will be distributed in a very narrow range, 
especially for a long-term stock price time series. Hence, the resolution of the 
η -metric is reduced. This can be clearly seen by examining a long random walk 
time series, which has an η  close to 0.9. By design it should be near zero. Since 
the random walk time series has very low predictability, the η -metric over all 
time series will be distributed in the approximate range of [0.9,1.0].  
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These problems are resolved as follows. For a long-term time series { , 
, the 

}tY
,2,1 " N,t = -metric is calculated on the first Q points, that is, a sample 

series { . Then, the sample series is shifted by ,, 21 YY , and the -metric 
is calculated again on the new sample { . Continuing this 
process, a series of 

},,, 21 τττ +++ QYYY "
’s that contains the local predictability estimations of 

subsequences of the whole time series are constructed. Generally, Qη  can be 
defined as the η -metric over the sample { . Thus, the },,, 11 Qttt YYY +++ " -series 
is represented by { },, , "τ,,, 2,,0, "ττ ηηη mQQQ . Since all the η ’s are 
estimated over same sample size Q, they are well comparable, and by selecting 
appropriate values of Q, they can be made to distributed in a reasonable range. 
This solves both problems. Additionally, by examining the resulting -series, 
the variation of the predictability over time can be observed, and the overall 
predictability of a specific time series can be estimated by calculating the 
average of all η ’s. 

" τ

EXPERIMENTS AND RESULTS 
In order to test the new metric, it is applied to three different kinds of time 

series: a deterministic time series, a random walk time series, and two stock 
price time series. The experiments clearly demonstrate that different kinds of 
times series yield significantly different predictability results. Each SSE in the 
results is obtained by performing 20 GP runs and averaging the best 10.  

Adil Qureshi’s GPsys release 2b [8] is used to perform all the GP runs. The 
configuration used in this study is given in Table 1. 

 
Table 1: GP configuration 

Generations 100 
Populations 2000 
Function set +, -, /, *, sin, cos, exp, sqrt, ln 
Terminal set }),10(,),2(),1( Rtxtxtx −−− …{  
Fitness Sum of squared error 
Max depth of new individual 9 
Max depth of new subtrees for mutation 7 
Max depth of individuals after crossover 13 
Mutation rate 0.01 
Generation method Ramped half-and-half 

 
Deterministic Time Series 

The Mackey-Glass equation is used to generate the deterministic time series 
in this study. The equation for the discretized map is 
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where a=0.1, b=0.2, c=10, and τ=16. The Mackey-Glass map is seeded with 17 
pseudo-random numbers and an 1100 points time series is generated. The first 
1000 points are discarded to remove the initial transients. The last 100 points are 
used as the deterministic time series upon which the predictability metric is 
tested. The sample size is set to 100 for Kaboudan’s method. For the new 
method, the sample size 20=Q  and the shift step 5 . Results are shown in 
Table 2 and Table 3.  

=τ

Table 2: Predictability of Mackey-Glass series using Kaboudan’s  -metric  

YSSE  SSSE  η  

4.014×  310− 4.323 0.999 

 

Table 3: Predictability of Mackey-Glass time series using the new metric 

τ  Y τSSE  SSSE   

0 1.938×  410− 0.124 0.998 
5 1.236×  4

4

4

4

3

4

4

3

4

10− 0.089 0.999 
10 6.400×  10− 0.121 0.999 
15 1.328×  10− 0.400 1.000 
20 6.691×  10− 0.418 0.998 
25 1.230×  10− 0.254 0.995 
30 6.443×  10− 0.118 0.995 
35 5.374×  10− 0.122 0.996 
40 1.009×  10− 0.174 0.994 
45 3.584×  10− 0.100 0.996 

Average η  0.997 

η ,20

 
 
Both Kaboudan’s metric and the new metric give an average η  very close 

to 1, indicating that the time series is highly predictable. Note that the difference 
in  between Kaboudan’s method and the new method presented in this 
paper is due to the length of the respective time series. Recall for Kaboudan’s 
method the time series is 100 observations and for the new method each 
subsequence is 20 observations.  

SSSE
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Random Walk Time Series 
A random walk time series is generated and tested using both the 

Kaboudan’s η -metric and the new metric. The random walk series 
, , is generated by R}tR{ t ,1= N,,2 " ttt aR += −1

5

, where a  is random 
variable uniformly distributed in [-0.5, 0.5], and the initial value R . 
Again, for Kaboudan’s method, the sample size is 100, and for the new method, 
the sample size Q  and the shift step 

t

0

20=

10=

=τ . The results are shown in table 4 
and 5.  
 
Table 4: Predictability of random walk series using Kaboudan’s η -metric 

YSSE  SSSE  η  

2.303 18.450 0.875 
 

Table 5: Predictability of random walk series using the new metric 
 

τ  Y τSSE  SSSE   

0 0.363 0.460 0.211 
5 0.728 0.957 0.239 

10 1.602 1.618 0.010 
15 1.899 1.864 0 
20 1.941 1.156 0 
25 1.804 1.885 0.043 
30 1.345 0.904 0 
35 0.415 0.740 0.439 
40 0.532 0.985 0.460 
45 0.954 0.599 0 

Average η  0.140 

η ,20 

Kaboudan’s metric gives 875.0=η  for a random walk series, which is 
obviously not reasonable. The new metric gives an average , which 
more accurately reflects the true predictability of a random walk time series. 
Following Kaboudan’s suggestion, if 0<η , it is simple set equal to zero, 
indicating that the time series is not predictable.  

140.0=η

 
Stock Price Series 

Next the new metric is applied to calculate the predictability of two stock 
price time series: Compaq Computer (CPQ) and General Electricity (GE) for the 
year 1999, with Q  and 20= 5=τ . The results are shown in Table 6.  

 
Stock Name Average η  

CPQ 0.818 
GE 0.415 

Table 6: Predictability estimations of stock price 
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The new metric gives average 818.0=η  for CPQ and η  for GE. 
These  η  values are different from the ones we obtained from the totally 
deterministic time series and the random walk time series. This result suggests 
that the stock price series is more predictable than the random walk series, and 
the new metric does disclose this difference and quantifies it.  

485.0=

CONCLUSIONS 
A new method for measuring time series predictability is proposed in this 

paper. It is based on the η -metric method introduced by Kaboudan [6], but 
overcomes the two main disadvantages of the pure η -metric method. It also 
provides a new feature, which shows how the predictability changes over 
different subsequences in a time series.  

This method has been shown to be able to distinguish stock price time series 
and random walk time series. Future work will study a wider variety of stocks. 
Additionally, this method will be studied in its value in making investment 
decisions.  
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