
Chaos, Solitons & Fractals 45 (2012) 238–245
Contents lists available at SciVerse ScienceDirect

Chaos, Solitons & Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier .com/locate /chaos
Analyzing logistic map pseudorandom number generators for
periodicity induced by finite precision floating-point representation

K.J. Persohn, R.J. Povinelli ⇑
Electrical and Computer Engineering Department, Marquette University, Milwaukee, WI, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 31 December 2010
Accepted 6 December 2011
Available online 20 January 2012
0960-0779/$ - see front matter � 2011 Elsevier Ltd
doi:10.1016/j.chaos.2011.12.006

⇑ Corresponding author.
E-mail addresses: kpersohn@ieee.org (K.J. Persoh

marquette.edu (R.J. Povinelli).
Because of the mixing and aperiodic properties of chaotic maps, such maps have been used
as the basis for pseudorandom number generators (PRNGs). However, when implemented
on a finite precision computer, chaotic maps have finite and periodic orbits. This manu-
script explores the consequences finite precision has on the periodicity of a PRNG based
on the logistic map. A comparison is made with conventional methods of generating pseu-
dorandom numbers. The approach used to determine the number, delay, and period of the
orbits of the logistic map at varying degrees of precision (3 to 23 bits) is described in detail,
including the use of the Condor high-throughput computing environment to parallelize
independent tasks of analyzing a large initial seed space. Results demonstrate that in terms
of pathological seeds and effective bit length, a PRNG based on the logistic map performs
exponentially worse than conventional PRNGs.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic nonlinear dynamical systems are capable of
imitating random noise. This property has sparked re-
search interest leading to various proposals of applied
chaos in communications, cryptography, and computer
simulations. Misunderstanding the relationship between
chaos and an applied field has resulted in numerous fail-
ures when practical applications attempt to implement
chaos theory. Some examples include an insecure synchro-
nized communication system [1], a weak and slow encryp-
tion algorithm [2], and a pseudorandom number generator
(PRNG) that falls short of its claims [3].

In this manuscript, we explore the following logistic
map as a PRNG.

xnþ1 ¼ 4xnð1� xnÞ; xn 2 ð0;1Þ: ð1Þ

Specifically, we examine empirically and exhaustively the
cyclic behavior of (1) in the range of 3 to 23 bits of preci-
sion. While we analyze (1) in the context of cryptography
. All rights reserved.
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to develop an understanding of why (1) performs poorly
compared to conventional PRNGs, our results are also
applicable to understanding the limitations of finite preci-
sion simulations of (1).

PRNGs are an important area of study because of their
ubiquitous use in a variety of applications: decision-making,
sampling, cryptography, and computer simulations. One
can also use a PRNG to construct other cryptographic
primitives such as block-ciphers and hashing functions
[4–7]. Various generation methods have different tradeoffs
in randomness and computational efficiency that lead to
compromises in speed, security, and randomness. Quantify-
ing these characteristics is essential for comparisons be-
tween chaos-based algorithms and their conventional
counterparts. In the next section, we discuss ideal properties
of PRNGs that influence randomness and metrics for bench-
marking performance in this context.

In the remainder of this manuscript, we present neces-
sary background information, which explains why the
claims in [3] are impossible in practice. Next, we propose
a method to quantify the periodicity of a chaos-based
PRNG implementation. Finally, an example based on the
logistic map demonstrates the differences between
chaos-based and conventional PRNGs.
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2. Background

2.1. Pseudorandom number generators

Sequences of random numbers are useful in many com-
puter applications. Generation of these sequences is said to
be done pseudo-randomly. That is, although the output ap-
pears to be random, the output is actually generated deter-
ministically based on a seed value. Seeds are useful when
reproducible sequences are desired, for example, debug-
ging a simulation or encrypting/decrypting a message. An
ideal random number generator is infinite, aperiodic, uni-
form, uncorrelated, and computationally efficient [3]. In
other words, an ideal generator produces an endless se-
quence of numbers without repeating itself, and each
number in the sequence has an equal probability of being
generated. Moreover, successive terms are not predictable
without knowing the seed [8]. Repetitive or correlated gen-
erators lead to systematic errors in simulations and inse-
cure cryptosystems.

In practice, a PRNG implementation cannot be infinite or
aperiodic when implemented with a finite precision com-
puter system. The bit depth allocated to each numerical rep-
resentation inherently limits the quantity of unique
numbers. Consequently, this finite set limits the seed space
for any PRNG implementation as well. As a corollary, a PRNG
implementation is periodic because the sequences naturally
repeat when the finite space used to represent each term is
exhausted. In the context of finite precision implementa-
tions, an ideal PRNG does not repeat itself until all elements
of its seed space have been generated. Like the theoretically
ideal PRNG, the ideal practical implementation is uncorre-
lated, uniformly distributed, and computationally efficient
for the first iteration of the entire seed space.

Various statistical and empirical tests exist to measure
the randomness of a sequence generated by a PRNG. Some
popular metrics are the chi-square (v2), Kolmogorov–
Smirnov, poker, and run-up tests [9]. Passing these tests
is a good indication a PRNG produces uncorrelated terms.
Other authors have obtained results from standard metrics
that suggest chaos-based generators are capable of suffi-
cient randomness [10,11]. However, it is always best to
test a PRNG in a specific application before determining
it is sufficiently random [12]. For this reason, diverse gen-
eration methods are desirable for different applications.

However, statistical analysis does not provide a complete
characterization of a PRNG. Previous studies of chaotic
PRNGs limited their statistical tests to single, relatively
short sequences [3,10]. While these sequences pass various
statistical tests, our results illustrate that these sequence
lengths are inconsistent. As a baseline for comparison,
consider the characteristics of conventional, integer-based
generation methods. Specifically, properly configured
conventional generators can guarantee 100% utilization of
the bits allotted for representing an entire period without
repetition. This comparison bridges the gap between chaotic
and conventional PRNGs. As will be shown later in this
manuscript, truncation effects can be detrimental to the
performance of a chaos-based implementation using finite
precision floating-point numbers. Analyzing floating-point
chaotic generators in a class of their own does not put the
limitations of finite precision in perspective.

As a review, consider the following conventional
methods:

2.1.1. Linear congruential generator
The linear congruential generator (LCG) is a very com-

mon class of PRNG used by many C compilers. It is defined
by the recurrence relation

xkþ1 ¼ ðaxk þ cÞmodm: ð2Þ

The maximum period is limited to m uncorrelated num-
bers [13]. Some implementations, for example the Java 2
SE Random class, elect to throw out lower order bits for en-
hanced randomness [14]. Consequently, they do not maxi-
mize periodicity with respect to the number of bits
representing the seed. Nevertheless, the LCG utilizes
100% of the retained bits producing a full period for all seed
values when a, c, and m meet certain conditions [9]. In
addition, LCGs are relatively fast and easy to implement.
Unfortunately, this class of generator is subject to a num-
ber of defects making it unsuitable for simulations or cryp-
tography [8].

2.1.2. Mersenne Twister (MT)
The MT is the default choice for randomization in many

popular software tools including MATLAB, Python, and
Ruby. The MT recurrence relation takes the form

xkþn ¼ xkþm � xu
k jxl

kþ1

� �
A; k ¼ 0;1;2; . . . ð3Þ

where j denotes bitwise OR, � is bitwise XOR, and xu, xl

represent bitmasks applied to x. The matrix A is the twist
transformation as described in [15]. The MT period is based
on a Mersenne prime, commonly 219937 � 1. This extre-
mely long period is attractive for simulations; however,
the MT becomes predictable after a relatively small num-
ber of iterations. For example, the MT19937 is predictable
after only 624 iterations—far short of its entire period. Con-
sequently, the MT is unsuitable for cryptographic applica-
tions without further modifications such as those in [16].

2.2. Chaos and cryptography

The motivation to study chaos-based PRNGs comes
from many parallels between chaos and cryptography.
Chaotic systems are highly sensitive to changes in initial
conditions. As a result, the mixing property of chaotic sys-
tems achieves desirable cryptographic properties of diffu-
sion and confusion. This ensures that influence of key
and plaintext bits are spread over the ciphertext, where
the key is a secret, the plaintext is the message, and the
ciphertext is an encrypted combination of the key and
the plaintext. Moreover, successive iterations of a chaotic
system reduce the statistical dependency of the ciphertext
on the plaintext. These iterations closely parallel rounds of
a cryptosystem [17]. All of these relationships allude to ap-
plied chaos being useful for cryptography. Likewise, chaos
is also applicable to other situations that require random-
ness, such as computer simulations.
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There is one significant difference between chaotic sys-
tems and cryptosystems that makes successful implemen-
tation challenging. Cryptosystems are defined on a discrete
set of numbers (often a range of integers) that can be
implemented on a computer with finite precision. On the
other hand, chaotic systems rely on the set of real numbers
to produce many of the desirable properties that are appli-
cable to PRNGs. Truncation of finite precision real numbers
causes sequences to repeat with very small periods relative
to the corresponding cycles in purely theoretical infinite
precision representations. Overlooking this crucial detail
leads to implementations that fall short of expectations
[3]. In terms of cryptanalysis, short periods lead to predict-
ability after a relatively small number of iterations. Obvi-
ously, this trait is undesirable in a secure system and is
further explained in [18].

2.3. The logistic map

Our example chaotic PRNG is based on the logistic map.
The recurrence relation

xnþ1 ¼ kxnð1� xnÞ; xn 2 ð0;1Þ ð4Þ

defines the logistic map, where xn is the nth value of the
map and k is a parameter. Since chaotic behavior is of
interest, k = 4 for this example. For a detailed discussion
of the logistic map and its many applications, see [19].
Note that (4) is defined on the open set (0,1) because 0 is
a known fixed point and 1 maps to 0. The logistic map is
an interesting chaotic system to study because it uses sim-
ple operators that should be computationally fast in imple-
mentation. Furthermore, it is defined on a range of real
numbers so it exemplifies the problem of interest when
implemented in finite precision.

2.4. Floating-point representation

Computers use a special representation to store floating-
point numbers as binary digits in memory. This demonstra-
tion uses the format that virtually all modern computers
conform to, IEEE 754-2008 [12]. Specifically, this study uses
single precision (binary32) numbers to keep computations
manageable. In binary32, 4 bytes represent each floating-
point number. The left-most bit designates the sign followed
by 8 exponent bits and finally 23 fraction bits (significand).
An additional implied leading 1 on the fractional part gives
24 total bits of significand precision. A bias representation
allows signed exponents. For example, Fig. 1 depicts the bit-
wise representation of decimal 0.123456 in memory.

For the map defined in (4), interest focuses on the frac-
tional portion of the IEEE representation since (4) is evalu-
ated between 0 and 1. Henceforth, references to the bits of
significand precision will refer to the number of bits
explicitly represented in memory.

The significand bits represent all possible seed values x0

for the map defined in (4). Likewise, the same set
Fig. 1. IEEE 754-2008 binary32 representation of 0.12345610.
represents all possible outcomes. While (4) with k = 4
and an appropriately chosen seed (x0) is aperiodic on
(0,1), truncation of xn to the floating-point representation
on a finite precision system limits xn to the set identified
by the significand bits.

2.5. Related work

The idea of using the logistic map to build a PRNG has
been previously discussed. LOGMAP has been shown to
pass the standard statistical tests by subsampling the lo-
gistic map and transforming the output to a uniformly dis-
tributed, uncorrelated sequence [10]. However, this study
did not rigorously test the periodicity; only random seeds
were considered resulting in unclear conclusions. Further-
more, the specific approach to testing for periodicity was
omitted; consequently, the test in [10] is neither reproduc-
ible nor applicable to other recurrence relations.

Andrecut proposes a different transformation of the lo-
gistic map to produce uniform, uncorrelated series [3]. The
result also passes various statistical tests and appears to be
computationally efficient. Nevertheless, the author con-
cludes that these series are aperiodic and infinite, which
disregards the adverse effects of an implementation in fi-
nite precision. The generator proposed in [3] when imple-
mented on a finite computer is finite and periodic and
therefore far less impressive than the original claim of an
endless generator.

Our approach to analyzing chaos-based PRNGs, which
we name finite precision period calculation (FPPC), aims
to provide a universal method for analyzing the period
lengths of recurrence relations implemented in finite pre-
cision. Our FPPC approach helps evaluate chaos-based
PRNGs against their conventional counterparts. Jiang and
Wu present a method to efficiently convert series pro-
duced by the logistic map into uncorrelated uniform se-
quences [11]. FPPC complements their study by
addressing the periodicity of the logistic map.
3. Finite precision period calculation

A finite precision implementation limits a theoretically
aperiodic, infinite series produced by chaotic PRNGs to a
periodic, finite series. In this section, we describe an ap-
proach, which we call finite precision period calculation
(FPPC), to determine the periodic behavior of a map imple-
mented on a finite computer. The FPPC algorithm exhaus-
tively explores a maps periodic behavior across a range of
precisions.

3.1. Example

To demonstrate how a map’s periods may be calculated,
consider an example based on the logistic map. Substitut-
ing k = 4 into (4) yields the chaotic relation of interest,

xnþ1 ¼ 4xnð1� xnÞ; xn 2 ð0;1Þ: ð5Þ

Let 4-bit binary fractions represent the set of x0 (seeds).
This demonstrates the effect of a 4-bit floating-point signif-
icand. Obviously, this is an extreme simplification that
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would never be implemented in practice; nevertheless,
this example illustrates the calculations that a computer
performs for greater bit precisions. There are 24 � 1 or 15
possible seeds (0 and 1 are excluded). Each produces a suc-
cessive floating-point number, which is then truncated to
its closest 4-bit representation. Table 1 summarizes the re-
sults of each seed including the sequence up to the first
duplicate, the length of the periodic cycle, how many num-
bers are generated before the cycle (delay), and the total
length of the sequence before the generator starts to repeat
terms.

Given a finite seed space, the ideal sequence has a per-
iod equal to the cardinality of the space. Clearly, the effects
of truncation are detrimental to achieving the ideal se-
quence period. For the 4-bit example, the maximum period
of 5 is less than the ideal of 15. Moreover, many of the peri-
ods are even shorter, suggesting an extremely inefficient
use of the available seed space. This simple case exempli-
fies the challenges introduced by implementing a PRNG
with truncated real numbers. As a result, the same bit
depth produces a far less random sequence than an inte-
ger-based generator achieves [9]. It is critical to under-
stand the effects of truncation in order to evaluate the
amount of randomness a chaotic PRNG is capable of
producing.
3.2. Algorithm

The FPPC algorithm performs the afore mentioned cal-
culations for a given recurrence relation. Our reference
implementation, written in ANSI C, performs calculations
for bit depths up to single precision (binary32). Given a
seed range and bit precision, FPPC calculates lengths and
delays for each seed (Algorithm 1). Using a range of seeds
as input allows multiple copies of the same executable to
run subsets of the entire seed space in parallel. As the
recurrence relation generates each term, FPPC tracks the
output checking for duplicates. We initialize the array of
seeds with a symbol not in the seed space as a way to indi-
cate whether or not a term repeats. The seeds array, in-
dexed by each seed’s binary fraction representation,
stores the time step when each number is generated.
Table 1
Logistic map series for a 4 bit significand.

Binary fraction x0 x1 trunc(x1) Sequence (x0,x

0001 0.0625 0.234375 0.1875 0.0625, 0.1875
0010 0.1250 0.437500 0.4375 0.1250, 0.4375
0011 0.1875 0.609375 0.5625 0.1875, 0.5625
0100 0.2500 0.750000 0.7500 0.2500, 0.7500
0101 0.3125 0.859375 0.8125 0.3125, 0.8125
0110 0.3750 0.937500 0.9375 0.3750, 0.9375
0111 0.4375 0.984375 0.9375 0.4375, 0.9375
1000 0.5000 1.000000 1.0000 0.5000, 1.0000
1001 0.5625 0.984375 0.9375 0.5625, 0.9375
1010 0.6250 0.937500 0.9375 0.6250, 0.9375
1011 0.6875 0.859375 0.8125 0.6875, 0.8125
1100 0.7500 0.750000 0.7500 0.7500, 0.7500
1101 0.8125 0.609375 0.5625 0.8125, 0.5625
1110 0.8750 0.437500 0.4375 0.8750, 0.4375
1111 0.9375 0.234375 0.1875 0.9375, 0.1875
Algorithm 1: Finite precision period calculation

Require: min, max, bitsPrecision
for (xn min;xn 6max;xn xn + �) do

seeds[ ] {SYMBOL}
while (!periodic) do

bf float2BinFrac(xn)
seeds[bf] n++
xn+1 4xn(1 � xn)
xn+1 float2BinFrac(xn+1)
bf trunc(xn+1,bitsPrecision)
xn+1 binFrac2Float(bf)
if (seeds[bf] == SYMBOL) then

xn = xn+1

else
periodic true

end if
end while
calculateCycles(seeds)

end for
Certain design decisions balance trade-offs in flexibility
and performance. For example, restricting this algorithm to
single precision greatly reduces the data structure com-
plexity. Likewise, calculations are much faster than if de-
signed to accommodate double precision. Contiguous
blocks of memory make use of array indexing to efficiently
determine when the relation enters a periodic cycle. This is
not possible for double precision numbers given the mem-
ory available on most computer systems. With some mod-
ifications to the data structures, this same approach
applies to increased bit depths beyond those presented in
this study.

In order to efficiently track previously generated xn, the
binary fraction representation of each number replaces
IEEE 754-2008 binary32. The 23-bit representation of each
number requires significantly less memory and allows for
easy truncation. This is an efficient solution for the logistic
map since the seed space is defined as (0,1). An additional
sign bit may be optionally added to accommodate other
1, . . . ,xduplicate) Length Delay Total

, 0.5625, 0.9375, 0.1875 3 1 4
, 0.9375, 0.1875, 0.5625, 0.9375 3 2 5
, 0.9375, 0.1875 3 0 3
, 0.7500 1 1 2
, 0.5625, 0.9375, 0.1875, 0.5625 3 2 5
, 0.1875, 0.5625, 0.9375 3 1 4
, 0.1875, 0.5625, 0.9375 3 1 4
, 1.0000 1 1 2
, 0.1875, 0.5625 3 0 3
, 0.1875, 0.5625, 0.9375 3 1 4
, 0.5625, 0.9375, 0.1875, 0.5625 3 2 5

1 0 1
, 0.9375, 0.1875, 0.5625 3 1 4
, 0.9375, 0.1875, 0.5625, 0.9375 3 2 5
, 0.5625, 0.9375 3 0 3



242 K.J. Persohn, R.J. Povinelli / Chaos, Solitons & Fractals 45 (2012) 238–245
recurrence relations seeded with (�1,1) at the cost of dou-
bling the memory required to detect duplicates.

3.3. Restricting precision

Another key feature of FPPC is its ability to restrict bit
precision lower than single precision. This feature serves
two purposes: results verification and trend analysis of
period length vs. precision. The implementation of this fea-
ture again makes use of the binary fraction number repre-
sentation. The normalized nature of IEEE 754-2008
floating-point numbers makes it difficult to truncate di-
rectly. Conversely, a binary fraction can easily be truncated
using a bitmask corresponding to the desired bits.

To illustrate the entire process, consider an example
from Table 1, row 4. The decimal 0.1875 is used to seed
(5), which is represented in memory as

0 01111100 10000000000000000000000: ð6Þ

The resulting term, decimal 0.609375, is represented by

0 01111110 00111000000000000000000: ð7Þ

In order to truncate (7) to a 4-bit representation, FPPC con-
verts the binary32 format to a denormalized binary frac-
tion. The float type requires conversion to an unsigned
integer containing bitwise representation. Next, right-shift
until the exponent bits become isolated and store this re-
sult to another variable. At this point, the exponent and
signed bit from the original representation are discarded,
isolating the mantissa. Now bitwise OR the fraction bits
with a 1 in position 23 (little endian) introducing the im-
plicit 1 from the normalized representation, which
produces

0 00000001 00111000000000000000000: ð8Þ

Subtract the stored exponent bits from the bias (12710) to
determine the denormalization shift. Finally, right-shift (8)
by this result to produce the resulting binary fraction,

0 00000000 10011100000000000000000: ð9Þ

Now, envision the mantissa bits as if they had a leading
decimal point. As a sanity check, add the significant frac-
tion bits,

1
21 þ

0
22 þ

0
23 þ

1
24 þ

1
25 þ

1
26 ð10Þ

which of course equals 0.609375, as one would expect.
Truncating the binary fraction representation is quite

simple. First, generate a bitmask corresponding to the de-
sired precision. For n bits, left-shift 1 n times and subtract
1. This result gets left-shifted to the most significant bit of
the mantissa. The 4-bit truncation mask is

0 00000000 11110000000000000000000: ð11Þ

Next, combine (9) and (11) with the bitwise AND opera-
tion, producing the truncated binary fraction

0 00000000 10010000000000000000000: ð12Þ

The decimal equivalent of (12) is 0.5625, which corre-
sponds to the expected value shown in Table 1.
Lastly, the truncated result requires conversion back to
binary32 representation before it can update the recur-
rence relation. Start by left-shifting the binary fraction un-
til the ‘‘implicit’’ 1 exits the mantissa region. The number
of shifts is subtracted from the exponent bias to determine
the value of the exponent bits. After discarding the implicit
1, combine the leftover mantissa bits and the generated
exponent via bitwise OR. Applying this process to (12)
yields,

0 01111110 00100000000000000000000: ð13Þ

which is the normalized binary32 representation. Finally,
the unsigned integer bits are restored to a float type, thus
completing the cycle.

As demonstrated previously, the effects of truncation
can be studied manually for reasonable lesser degrees of
precision, such as the 4-bit case presented in Table 1. We
have verified FPPC results for three, four, and five bits of
precision, which correspond, respectively, to base 10 preci-
sions of 0.125 (1/8), 0.0625 (1/16), and 0.03125 (1/32).
Using this software truncation technique one can explore
the relationship between sequence period length and
depth of precision.

3.4. Distributed computing implementation

As FPPC utilizes more bits of precision, the number of
possible seeds and outcomes drastically increase. For sin-
gle precision and beyond the seed space is so large it be-
comes unreasonable to calculate on a single computer.
Single precision calculations performed on a single Intel
Core 2 Duo workstation clocked at 2.26 GHz were very
time consuming. As the cardinality of the random number
space approaches the order of 106, calculating all possible
outcomes approaches days of computing time instead of
hours or minutes. Fortunately, each period calculation is
independent of one another for a given seed. Under this
condition, seed ranges are easily distributed to multiple
nodes in a distributed computing environment without
the need for communication between nodes. This enables
many nodes to simultaneously determine the period of dif-
ferent subsets of the entire random number space. After
FPPC calculates the metrics for each seed (in parallel), a
post-processing job aggregates the output files into a uni-
fied result. Using this technique, the computation time
for higher degrees of precision becomes reasonable.

FPPC is designed to run in a distributed high-through-
put environment using Condor middleware [20]. The logis-
tic map example runs on Père, a homogeneous subset of
the Marquette University distributed computing grid
[16]. Père is comprised of 128 compute nodes each with
8 Intel Nehalem 2.67 GHz cores. Even with the overhead
introduced by Condor’s job management, single precision
FPPC calculations are reduced from several days on a single
machine to about 20 min on the cluster. High-throughput
computing enables the possibility to test precision beyond
the binary32 format. In a parallel environment, random ac-
cess memory (RAM) becomes a greater limiting factor than
processing power. FPPC requires enough memory to repre-
sent all possible outcomes in order to detect when repeti-
tion occurs. The binary64 standard for floating-point



Table 2
Finite cycles of the logistic map in single precision.

Period length Occurrences Frequency (%)

1 238,675 2.8452
2 502 0.0060
4 204 0.0024

115 49,998 0.5960
123 211,896 2.5260
400 1,677,912 20.0023
487 6,209,420 74.0221
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precision representation uses 8 bytes of memory for each
number [21]. Given m bytes of available heap memory,
FPPC can calculate periods for up to

log2
available memory

sizeof ðdoubleÞ

� �� �
¼ log2

m
8

� 	j k
ð14Þ

bits of precision. Eq. (14) comes from dividing the available
system memory by the size of a double precision number.
Flooring the base-2 logarithm of this result converts the ac-
tual seed space size into the integer number of bits possible
for binary representation without exceeding the system
memory limitation. For example, each core on Père, has
3 GiB of physical RAM. After accounting for the operating
system kernel, job management overhead, etc. there are
approximately 2.75 GiB available for FPPC. Substituting
into (14) yields,

log2
2:75 � 230

8

 !$ %
¼ 28 bits: ð15Þ

As it turns out, 23 bits successfully demonstrates the effects
of truncation on the logistic map so it is not necessary to ex-
haust these limits for this particular example. Of course, (15)
assumes memory is allocated contiguously, as it is in this
implementation of FPPC. Alternatively, any bookkeeping
overhead needs consideration if a noncontiguous data struc-
ture replaces the array to improve memory allocation
efficiency.

4. Results

FPPC reveals poor periodicity characteristics for the lo-
gistic map represented in (5) when implemented as a
PRNG. The truncation routine previously described simu-
lates precision varying from 3-bits to 23-bits. Fig. 2 shows
box and whiskers plots of the total period lengths with re-
spect to bit depth. The ‘‘whiskers’’ illustrate minimum and
maximum lengths and the box outlines the interquartile
range (25th to 75th percentile). Moreover, the center line
depicts the median length. As indicated by the lower whis-
ker, all depths of precision tested have pathological seeds
that result in minimum cycles of length 1 or 2.
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Fig. 2. Logistic map: periodicity vs. bits of precision.
As one might expect, the total period length generally
increases with more bits of precision. On some occasions,
however, the length actually decreases for a 1-bit increase
in precision. This demonstrates that due to truncation ef-
fects, an increase in precision does not guarantee an in-
crease in period length. Interestingly, the maximum
period length for single precision (23 bit significand) is sev-
eral orders of magnitude smaller than that of the logistic
map’s conventional counter parts. Moreover, the linear
methods guarantee the maximum length (with correct
parameter selection), while the logistic map only produces
that sequence for a few select seeds. Fig. 2 also confirms
that the logistic map performs much worse than the LCG
[9] and the Mersenne Twister [15]. On top of these poor
performance characteristics, the logistic map has numer-
ous pathological seeds that should deter anyone from
using it as a PRNG where the application requires long se-
quences of non-repetitive numbers.

For each bit depth, FPPC calculates the delay, length,
and total statistics introduced in the four bit example.
These arrays represent the number of times each period
occurs. For example, the logistic map has seven unique cy-
cles (Table 2) when implemented in single precision (23 bit
significand).

Although there are only a small number of periodic cy-
cles, the delay before landing on one of these orbits greatly
varies. Combining the various delays with each periodic
cycle yields numerous, but a finite number of, total series
elements before the generator repeats itself. Fig. 3 shows
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Fig. 3. Finite cycles of the logistic map (single precision).
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Fig. 5. Effective precision shows the number of bits utilized by the
logistic map PRNG with respect to the bit depth of the seed space.
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the occurrences of each delay and total cycle lengths for
single precision. Although the distribution of lengths is
not perfectly uniform, the general trend suggests undesir-
able short lengths are similarly likely as the most robust
lengths. A good PRNG should have rare pathological seeds,
which are excluded from use if necessary. The distribution
in Fig. 3 suggests the logistic map does not meet this
condition.

Phatak and Rao determined the logistic map has six un-
ique periods using 105 seeds chosen by another PRNG [10].
The extra period FPPC finds is likely due to an exhaustive
search. Regardless, the similarity between both results is
good validation that FPPC produces correct results. How-
ever, there is a discrepancy between the exact cycle
lengths reported in [10] and those determined by FPPC.
Phatak and Rao did not elaborate on their technique so it
is difficult to determine the cause of this difference. It is
possible that their periodicity detection was based on
when the logistic map hits fixed points, {0,0.75,1}. We sus-
pect the study in [10] allowed the use of escalated preci-
sion for intermediate calculations. This could explain why
Phatak and Rao observed periodicity after approximately
5000 iterations, when truncation to zero occurs. In con-
trast, FPPC, which finds cycles based on any repeated value,
does not detect any periods larger than 4261.

An ideal PRNG never repeats itself; however, an actual
implementation cannot meet this characteristic with a fi-
nite amount of memory. Nevertheless, the best realistic
implementation maximizes the usage of its finite memory
allotment. In other words, the sequence length is equal to
the size of the seed space for the best-performing realistic
generator.

Fig. 4 demonstrates how poorly the logistic map utilizes
its available seed space. From Fig. 2 alone it seems reason-
able to keep increasing the bit of precision until a desired
length results. However, Fig. 4 demonstrates how ineffi-
cient that approach is for the logistic map. Due to real
number truncation, the utilization of the available space
decreases severely. In single precision, the logistic map
only uses a tiny fraction of a percent of the maximum pos-
sible sequence length. In contrast, integer based generators
are capable of guaranteeing 100% utilization before repeat-
ing [9,15]. Simply providing the real number-based gener-
ator more memory does not increase its efficiency.

Effective precision is another interesting metric for ana-
lyzing the PRNG performance. For a good generator, the
bits required to represent the sequence length should
equal the bits required to represent all possible outcomes.
Fig. 5 shows the effective precision produced by the logis-
tic map.

The effective precision is computed by taking the base-2
logarithm of the total period lengths. For almost every bit
depth, the bits required to represent the sequence length
is less than half the bits available in memory. Again, this
trend does not suggest that the efficiency of the logistic
map will improve simply by increasing the available
memory.

All of these metrics suggest the logistic map performs
poorly as a PRNG. It is clear that the truncation of the real
number floating-point representation is detrimental to the
performance of this generator. Conversely, numerous stud-
ies [3,10,11] conclude the logistic map performs ade-
quately based on the results of many standardized
statistical tests. This discrepancy is simply due to the fact
that the statistical tests pass when applied to a sequence
that has not yet entered its periodic cycle. Phatak and
Rao explicitly describe rejecting terms beyond the region
they determined to be aperiodic [10]. Jiang and Wu use
100,000 iterations of the logistic map implemented in dou-
ble precision [11]. As a result, the statistical tests pass be-
cause the sequences are not periodic unless the length is
another order of magnitude larger [10]. In conclusion, the
logistic map produces sufficiently uniform and uncorre-
lated series; nonetheless, the length of these series is infe-
rior relative to what a conventional generator produces
given the same amount of memory.
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5. Future work

FPPC is primarily limited by the amount of memory re-
quired to store sequence history. In order to enable effi-
cient exploration of double precision and beyond, a
creative coding scheme is required to represent this data.
As computing resources expand it will be necessary to
study the effects of finite precision with larger and more
complicated number representations. Extending FPPC with
modular data structures would enable it to grow alongside
the data storage industry. The logistic map has been thor-
oughly analyzed with respect to each of the ideal PRNG
characteristics except for computational speed. Although
some authors [3,10,11] have made loose claims about the
efficiency of the logistic map, it has yet to be quantitatively
benchmarked against other algorithms. Understanding the
tradeoffs between computational performance and ran-
domness is key to determining if the logistic map can make
up for what it lacks in periodicity with generation speed.

6. Conclusion

Real number implementations in finite precision are det-
rimental to the periodicity of chaotic PRNGs. Ignoring this
reality makes chaos-based PRNGs deceptively appealing
for random applications. FPPC algorithm can comprehen-
sively analyze the periodicity of truncated real number ser-
ies generated by a recurrence relation. Using these results
one can make informed decisions about the appropriate
use of a chaotic PRNG with respect to its conventional coun-
ter-parts. The results revealed about the logistic map do not
appear competitive with conventional PRNGs.
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