

Improving Computational Performance of Genetic Algorithms: A
Comparison of Techniques

Richard J. Povinelli
Department of Electrical and Computer Engineering

Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
e-mail: Richard.Povinelli@Marquette.edu; www: http://povinelli.eece.mu.edu

Abstract

A comparison of three methods for saving
previously calculated fitness values across
generations of a genetic algorithm is made.
These methods lead to significant computational
performance improvements. For real world
problems, the computational effort spent on
evaluating the fitness function far exceeds that of
the genetic operators. As the population evolves,
diversity usually diminishes. This causes the
same chromosomes to be frequently reevaluated.
By using appropriate data structures to store the
evaluated fitness values of chromosomes,
significant performance improvements are
realized. Several different data structures are
compared and contrasted. This paper shows that,
for different sets of genetic algorithm
parameters, including selection type, population
size, and level of mutation, performance
improvements are realized.

1 INSTRODUCTION
Although genetic algorithms (GAs) are robust global
optimizers (Goldberg 1989; Holland 1992), they are
slower to converge than gradient-based methods
(Povinelli and Feng 1999b). Hashing provides an
effective method for improving a GA’s computational
performance (Povinelli and Feng 1999b). In this paper,
the study of new techniques to improve GA performance
is further investigated. Three methods are evaluated for
their effectiveness in improving GA computational
performance. The first, for comparison purposes, is the
hashing technique previously introduced in (Povinelli and
Feng 1999b). The second method saves the current
generation’s fitness values for use by the following
generation. The third uses a binary tree to store previously
calculated fitness values.
The paper is broken into four sections. The first section
presents the problem statement, discusses the
optimization problem, and details the testing platform.
The second section discusses each of the three potential

solutions. The third section presents the results and
discusses their significance. The final section summarizes
the paper.

2 PROBLEM STATEMENT
The genesis of this research began by profiling the
computation time of a GA. For complex, real world
problems, most time is spent evaluating the fitness
function (Povinelli and Feng 1999b). By studying the
convergence criteria and the diversity characteristics of an
evolving GA, it is observed that fitness values are
frequently recalculated. This suggests an opportunity for
performance improvement.
By efficiently storing fitness values with any of the three
methods, GA performance can be dramatically improved.
For the test problem, hashing provides the best
performance improvement, then the keep last generation
algorithm, and finally the binary tree technique.
Previously it was shown that hashing can provide a
computational performance improvement of more than
50% on a complex real world problem (Povinelli and
Feng 1999b). Feedback from the presentation of these
results was the impetus to explore alternative methods for
storing previously calculated fitness values.
The first method is the hashing algorithm originally
presented in (Povinelli and Feng 1999b). Assuming the
size of the hash table is initialized appropriately, the
computational cost of hashing is constant, but as the
search space is explored, the cost degrades to O(n) for
both insertion and retrieval (Manber 1989, p. 80). The
hashing technique used here avoids the O(n) cost by
reinitializing the hash table as its performance degrades.
The second method investigated is a keep last generation
algorithm, which stores the previous generation’s fitness
values in a hash table, which is reinitialized after each
generation.
The third method is a binary tree algorithm, which has an
average insertion and retrieval cost of O(log n) and a
worst case cost of O(n) (Manber 1989, p. 73). On average
the cost of insertion and retrieval grows logarithmically as
the search space is explored.

Because of the theoretical comparative computational
effort of the three techniques and the amount of
previously calculated fitness value storage, it is assumed
that hashing provides the greatest benefit. This is
experimentally confirmed. But surprisingly, the binary
tree algorithm delivers the poorest performance of the
three methods.
The test problem for this paper is an application of Time
Series Data Mining (TSDM) (Povinelli 1999; Povinelli
and Feng 1998; Povinelli and Feng 1999a) to identifying
events in a financial time series, where an event is an
important occurrence. The TSDM technique characterizes
and predicts such events in time series by adapting data
mining concepts for analyzing time series. Based soundly
in dynamical systems theory (Takens 1980), the TSDM
method reveals hidden temporal patterns in time series
data by taking advantage of the event nature of many
problems.
The search mechanism at the heart of the TSDM method
is a GA. The details of the GA are briefly discussed. A
simple GA composed of the following steps is used.
 While all fitness have not converged

a) Perform selection, save elite individual.
b) Crossover population.
c) Mutate population.
d) Calculate fitness.

The GA uses a binary chromosome of length 18, random
locus crossover, and single individual elitism. The
stopping criterion for the GA is convergence of all fitness
values. Both tournament and roulette selection are
investigated. The tournament selection uses a tournament
size of two.
The benchmarks were performed with MATLAB 5.3.1
running under Windows NT 4.0 Service Pack 5. The
computation time was obtained with MATLAB’s
profiling tool, which reports a precision of .016s. The
hardware environment was a dual Pentium III 450MHz
with 256MB 100MHz SDRAM, 18GB ultra-IDE hard
drive, and a 32MB AGP video card. Although the
hardware contains two processors, MATLAB runs on
only one processor.
Now that the problem statement has been discussed, the
potential solutions will be reviewed.

3 POTENTIAL SOLUTIONS
This section discusses the three algorithms used in this
paper. The key to improving the performance of the GA is
to reduce the time needed to calculate the fitness. By
examining the mechanisms of the GA, it is seen that the
diversity of the population decreases as the algorithm
runs. The fitness values for the same chromosomes are
recalculated repeatedly. If previously calculated fitness
values can be efficiently saved, computation time will
diminish significantly.
The data mining problem used in this paper searches for
temporal patterns in a time series. To find a temporal

pattern of length two requires chromosomes of length 18.
This means that the search space contains 218 or 267,144
members. With this number of members, the fitness
values could be stored in an array. Although this is not an
unmanageable size, the problem quickly becomes
unwieldy for a slightly larger data-mining problem. For
example, a search for temporal patterns of length four
requires a chromosome of length 30. This yields a search
space with more than one trillion members. With current
technology, it is not feasible to store a 1012 size array
efficiently. This leads us to consider alternative methods
for storing the fitness values.

3.1 HASHING ALGORITHM
The classic data structure for efficient storage and
retrieval is the hash table. A discussion of hashing can be
found in (Manber 1989, pp.78-79). A brief description is
provided here.
The interface to a hash table provides two methods. The
first is put, which takes two parameters – a key and an
element. The put method stores the element with the
associated key. The second method is get. It takes one
parameter, the key, and returns two values – a flag
indicating if an element was found and the element.
Internally, the key-element pairs are stored in an array.
The array is accessed through a hash, which is based on
the key. Table 1 shows how the data structure is formed.

Table 1 – Sample Hash Table Extract

Hash Key Element

100 1001001 32.5
101 Null Null
110 1100010 45.7

A hash is generated from the key. For this problem, the
hash is created by taking the first n bits of the
chromosome, where 2n is the size of the hash table.
As more elements are stored in the hash table, the same
hash must be used for representing two distinct elements.
This is called a collision. As collisions mount, the
efficiency of the hash table degrades from O(1) to O(n).
To avoid this performance degradation, a count of the
number of collisions is maintained. Once the number of
collisions exceeds the size of the hash table, a rehash is
performed. Normally, a rehash involves two steps. The
first step is to create a larger hash table. The second step
is to copy the elements from the smaller hash table to the
larger. The hashing algorithm used here is modified
because too much time is spent on rehashing. The
rehashing mechanism is modified by taking advantage of
the diversity reduction that occurs as a GA runs. Only the
first step of creating a larger hash table is done. The
smaller hash table is destroyed. This seems counter-

intuitive because all of the known fitness values are lost.
But since the diversity decreases as the GA runs, many of
the eliminated key-element pairs will not be needed. The
GA diversity is decreasing, so the chromosome values
will be quickly recalculated. The hash table will fill up
again with the most used key-element pairs.

3.2 KEEP LAST GENERATION ALGORITHM
The next technique is based on the hash table approach,
but only the previous generation of fitness values is
stored. Because only the previous generation is stored and
the size of GA populations used in this paper are 10 and
30, the hash table size is set to 256. This is a significantly
smaller hash table than the one used in the hashing
algorithm approach, which starts with a size of 4,096 and
grows as large as 65,536.

3.3 BINARY TREE ALGORITHM
The next algorithm is based on a binary tree. A discussion
of binary trees can be found in (Manber 1989, pp.71-74).
A brief description is provided here. The binary tree
algorithm provides the same two methods as the hashing
algorithm. The first is put, which takes two parameters – a
key and an element. The put method stores the element
with the associated key. The second method is get. It
takes one parameter, the key, and returns two values – a
flag indicating if an element was found and the element.
The main difference between the binary tree algorithm
and the hashing algorithm is the data structure used to
store the key-element pairs. The hashing algorithm uses
an array, whereas the binary tree algorithm uses a binary
tree. An example binary tree is shown in Figure 1.

Figure 1 – Sample Binary Tree

The put method starts by setting the current node to be the
root of the binary tree. The put method compares the key
to current node of the tree. If the key matches the node,
the put method stops. If the key is greater than the current
node and there is a left branch, the left branch node
becomes the current node and the search continues. If
there is no left branch, a new node is created as the left
branch with a value equal to the key and the element as an
attribute. If the key is less than the current node, the right
branch node becomes the current node and the search
continues. If there is no right branch, a new node is

created as the right branch with a value equal to the key
and the element as an attribute.
The get method starts by setting the current node to be the
root of the binary tree. The get method compares the key
to current node of the tree. If the key matches the node,
the element stored with that node is returned. If the key is
greater the current node, the left branch node becomes the
current node and the search continues. If the key is less
than the current node, the right branch node becomes the
current node and the search continues. If there are no
branches off the current node, the get method reports that
the search failed.
Now that the three algorithms have been presented, the
results of applying these algorithms to the test problem
are given.

4 RESULTS
This section discusses results of applying the three
algorithms to the test problem. The results show that each
of the algorithms provides a performance improvement
across population size, mutation, and type of selection.
The performance improvements are statistically
significant and not artifacts of the number of generations.
Each data point in the following tables represents the
results of 100 trials.
In Table 2 and Table 3, the mean and standard deviation
computational performance measured in seconds is
compared for tournament selection. For all combinations
of population size (Pop.) and mutation (Mut.), the hashing
algorithm is 2.3-3.8 times faster the simple GA. The keep
last algorithm is 2.2-3.1 times faster the simple GA. The
binary tree algorithm is 1.8-2.6 times faster the simple
GA.

Table 2 – Mean Computational Performance for
Tournament Selection (s)

Pop. Mut. None Binary Tree Keep Last Hashing

10 0 6.35 3.46 2.93 2.73
30 0 39.8 21.5 17.2 16.7
10 0.02 39.4 15.4 12.8 10.3

Table 3 – Standard Deviation Computational Performance
for Tournament Selection (s)

Pop. Mut. None Binary Tree Keep Last Hashing

10 0 1.49 0.820 0.609 0.497
30 0 9.10 4.81 3.16 3.11
10 0.02 26.5 10.3 7.55 4.55

1001001

32.5

1001001

32.51100010

45.7

1100010

45.7

1000001

15.6

1000001

15.6 0100001

27.5

0100001

27.5

1000101

70.0

1000101

70.0

In Table 4 and Table 5, the probability of a making a
Type I Error (incorrectly stating that the computational
time is greater when it is not) is shown. The one tail
difference of two independent means statistical test is
used. In only one case is the statistical significance
suspect. That is when the computational time for the keep
last algorithm is statistically greater than the
computational time for the hashing algorithm when the
GA population was 30 and the mutation rate 0.

Table 4 – Probability of Type I Error (α) for Tournament
Selection Computational Performance, Part I

Pop. Mut. None >
Binary Tree

None >
Keep Last

None >
Hashing

10 0 1.62x10-65 6.33x10-101 3.23x10-118
30 0 1.26x10-70 5.96x10-122 1.27x10-127
10 0.02 1.53x10-17 2.23x10-22 1.53x10-27

Table 5 – Probability of Type I Error (α) for Tournament
Selection Computational Performance, Part II

Pop. Mut. Binary Tree
> Keep Last

Binary Tree
> Hashing

Keep Last >
Hashing

10 0 1.27x10-7 2.08x10-14 5.91x10-3
30 0 2.35x10-14 1.71x10-17 1.35x10-1
10 0.02 1.98x10-2 3.14x10-6 2.78x10-3

In Table 6 and Table 7, the mean and standard deviation
number of generations is presented.

Table 6 – Mean Number of Generations for Tournament
Selection

Pop Mut. None Binary Tree Keep Last Hashing

10 0 7.72 8.37 8.03 7.83
30 0 15.8 15.8 15.6 16.4
10 0.02 46.0 46.7 40.4 45.8

Table 7 – Standard Deviation Number of Generations for
Tournament Selection

Pop Mut. None Binary Tree Keep Last Hashing

10 0 1.75 2.27 1.98 1.60
30 0 3.60 4.07 3.49 4.39
10 0.02 30.8 37.2 28.6 30.4

Table 8 and Table 9 show the probability of making a
Type I Error in saying that the number of generations is
different. Using the two tail difference of two independent
means statistical test, none of the number of generations is
statistically different from one another. This provides
further assurance that the differences in computational
performances are statistically significant and not artifacts
of the number of generations.

Table 8 – Probability of Type I Error (α) for Tournament
Selection Generations, Part I

Pop Mut. None ≠
Binary Tree

None ≠
Keep Last

None ≠
Hashing

10 0 0.023 0.240 0.643
30 0 0.985 0.675 0.260
10 0.02 0.890 0.180 0.952

Table 9 – Probability of Type I Error (α) for Tournament
Selection Generations, Part II

Pop Mut. Binary Tree ≠
Keep Last

Binary Tree
≠ Hashing

Keep Last
≠ Hashing

10 0 0.259 0.052 0.432
30 0 0.682 0.292 0.130
10 0.02 0.180 0.847 0.198

In Table 10 and Table 11, the mean and standard
deviation computational performance measured in
seconds is compared for roulette selection. As for
tournament selection, the order of computation
improvement was the hashing algorithm, the keep last
algorithm, and the binary tree algorithm. The hashing
algorithm is 3.4-4.4 times faster than the simple GA. The
keep last algorithm is 2.8-3.8 times faster the simple GA.
The binary tree algorithm is 2.3-2.6 times faster the
simple GA.

Table 10 – Mean Computational Performance for
Roulette Selection (s)

Pop Mut. None Binary Tree Keep Last Hashing

10 0 12.7 4.93 3.95 3.73
30 0 89.5 33.8 23.4 20.4
10 0.02 115. 50.3 40.8 28.3

Table 11 – Standard Deviation Computational
Performance for Roulette Selection (s)

Pop Mut. None Binary Tree Keep Last Hashing

10 0 7.40 1.82 1.32 1.18
30 0 55.4 12.8 7.24 5.89
10 0.02 125. 42.4 36.2 17.6

In Table 12 and Table 13, the probability of a making a
Type I Error is shown. Again, in only one case is the
statistical significance suspect. That is when the
computational time for the keep last algorithm is
statistically greater than the computational time for the
hashing algorithm when the GA population was 10 and
the mutation rate 0.

Table 12 – Probability of Type I Error (α) for Roulette
Selection Computational Performance, Part I

Pop Mut. None >
Binary Tree

None >
Keep Last

None >
Hashing

10 0 1.14x10-24 1.56x10-31 2.90x10-33
30 0 5.37x10-23 1.35x10-32 1.11x10-35
10 0.02 5.14x10-7 6.60x10-9 3.93x10-12

Table 13 – Probability of Type I Error (α) for Roulette
Selection Computational Performance, Part II

Pop Mut. Binary Tree
> Keep Last

Binary Tree
> Hashing

Keep Last >
Hashing

10 0 6.94x10-6 1.54x10-8 1.02x10-1
30 0 9.62x10-13 9.00x10-22 5.33x10-4
10 0.02 4.35x10-2 7.82x10-7 9.58x10-4

Table 14 and Table 15 present the mean and standard
devation of the number of generations for roulette
selection.

Table 14 – Mean Number of Generations for Roulette
Selection

Pop Mut. None Binary Tree Keep Last Hashing

10 0 15.4 15.4 15.1 15.7
30 0 35.5 33.8 33.8 34.5
10 0.02 135. 155. 135. 146.

Table 15 – Standard Deviation Number of Generations for
Roulette Selection

Pop Mut. None Binary Tree Keep Last Hashing

10 0 9.05 7.81 8.31 8.61
30 0 21.8 17.7 20.7 20.2
10 0.02 146. 149. 128. 115.

In Table 16 and Table 17, it is seen that number of
generations cannot be said to be statistically different
between the various algorithms for roulette selection.

Table 16 – Probability of Type I Error (α) for Roulette
Selection Generations, Part I

Pop Mut. None ≠
Binary Tree

None ≠
Keep Last

None ≠
Hashing

10 0 0.973 0.782 0.817
30 0 0.548 0.566 0.752
10 0.02 0.336 0.997 0.550

Table 17 – Probability of Type I Error (α) for Roulette
Selection Generations, Part II

Pop Mut. Binary Tree
≠ Keep Last

Binary Tree
≠ Hashing

Keep Last ≠
Hashing

10 0 0.793 0.777 0.599
30 0 0.988 0.780 0.785
10 0.02 0.304 0.633 0.514

This section showed that each of the three algorithms
provides statistically significant performance
improvement across population size, mutation, and type
of selection. It also shows that the hashing algorithm
provides the greatest performance improvement. It is
between 2.3-4.4 times faster than the simple GA.

5 CONCLUSION
Modification of the simple GA to save previously
computed fitness values provides significant performance
improvements. This was demonstrated with three
different methods for storing the fitness values including a
binary tree algorithm, keep last algorithm, and a hashing
algorithm. The hashing technique, at 2.3-4.4 times faster
than the simple GA, provides the greatest performance
improvement.

References
Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning, Addison-Wesley,
Reading, Massachusetts.
Holland, J. H. (1992). Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence, MIT Press,
Cambridge, Massachusetts.
Manber, U. (1989). Introduction t o Algorithms: A
Creative Approach, Addison-Wesley, Reading, MA.
Povinelli, R. J. (1999). “Time Series Data Mining:
Identifying Temporal Patterns for Characterization and
Prediction of Time Series Events,” Ph.D. Dissertation,
Marquette University, Milwaukee.
Povinelli, R. J., and Feng, X. (1998). “Temporal Pattern
Identification of Time Series Data using Pattern Wavelets
and Genetic Algorithms.” Artificial Neural Networks in
Engineering, St. Louis, Missouri, 691-696.
Povinelli, R. J., and Feng, X. (1999a). “Data Mining of
Multiple Nonstationary Time Series.” Artificial Neural
Networks in Engineering, St. Louis, Missouri, 511-516.
Povinelli, R. J., and Feng, X. (1999b). “Improving
Genetic Algorithms Performance By Hashing Fitness
Values.” Artificial Neural Networks in Engineering, St.
Louis, Missouri, 399-404.
Takens, F. (1980). “Detecting strange attractors in
turbulence.” Dynamical Systems and Turbulence,
Warwick, 366-381.

