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Abstract 
 
 
A comparison of three methods for saving 
previously calculated fitness values across 
generations of a genetic algorithm is made. 
These methods lead to significant computational 
performance improvements. For real world 
problems, the computational effort spent on 
evaluating the fitness function far exceeds that of 
the genetic operators. As the population evolves, 
diversity usually diminishes. This causes the 
same chromosomes to be frequently reevaluated. 
By using appropriate data structures to store the 
evaluated fitness values of chromosomes, 
significant performance improvements are 
realized. Several different data structures are 
compared and contrasted. This paper shows that, 
for different sets of genetic algorithm 
parameters, including selection type, population 
size, and level of mutation, performance 
improvements are realized. 

1 INSTRODUCTION 
Although genetic algorithms (GAs) are robust global 
optimizers (Goldberg 1989; Holland 1992), they are 
slower to converge than gradient-based methods 
(Povinelli and Feng 1999b). Hashing provides an 
effective method for improving a GA’s computational 
performance (Povinelli and Feng 1999b). In this paper, 
the study of new techniques to improve GA performance 
is further investigated. Three methods are evaluated for 
their effectiveness in improving GA computational 
performance. The first, for comparison purposes, is the 
hashing technique previously introduced in (Povinelli and 
Feng 1999b). The second method saves the current 
generation’s fitness values for use by the following 
generation. The third uses a binary tree to store previously 
calculated fitness values. 
The paper is broken into four sections. The first section 
presents the problem statement, discusses the 
optimization problem, and details the testing platform. 
The second section discusses each of the three potential 

solutions. The third section presents the results and 
discusses their significance. The final section summarizes 
the paper. 

2 PROBLEM STATEMENT 
The genesis of this research began by profiling the 
computation time of a GA. For complex, real world 
problems, most time is spent evaluating the fitness 
function (Povinelli and Feng 1999b). By studying the 
convergence criteria and the diversity characteristics of an 
evolving GA, it is observed that fitness values are 
frequently recalculated. This suggests an opportunity for 
performance improvement. 
By efficiently storing fitness values with any of the three 
methods, GA performance can be dramatically improved. 
For the test problem, hashing provides the best 
performance improvement, then the keep last generation 
algorithm, and finally the binary tree technique. 
Previously it was shown that hashing can provide a 
computational performance improvement of more than 
50% on a complex real world problem (Povinelli and 
Feng 1999b). Feedback from the presentation of these 
results was the impetus to explore alternative methods for 
storing previously calculated fitness values. 
The first method is the hashing algorithm originally 
presented in (Povinelli and Feng 1999b). Assuming the 
size of the hash table is initialized appropriately, the 
computational cost of hashing is constant, but as the 
search space is explored, the cost degrades to O(n) for 
both insertion and retrieval (Manber 1989, p. 80). The 
hashing technique used here avoids the O(n) cost by 
reinitializing the hash table as its performance degrades. 
The second method investigated is a keep last generation 
algorithm, which stores the previous generation’s fitness 
values in a hash table, which is reinitialized after each 
generation. 
The third method is a binary tree algorithm, which has an 
average insertion and retrieval cost of O(log n) and a 
worst case cost of O(n) (Manber 1989, p. 73). On average 
the cost of insertion and retrieval grows logarithmically as 
the search space is explored. 



 

 

Because of the theoretical comparative computational 
effort of the three techniques and the amount of 
previously calculated fitness value storage, it is assumed 
that hashing provides the greatest benefit. This is 
experimentally confirmed. But surprisingly, the binary 
tree algorithm delivers the poorest performance of the 
three methods. 
The test problem for this paper is an application of Time 
Series Data Mining (TSDM) (Povinelli 1999; Povinelli 
and Feng 1998; Povinelli and Feng 1999a) to identifying 
events in a financial time series, where an event is an 
important occurrence. The TSDM technique characterizes 
and predicts such events in time series by adapting data 
mining concepts for analyzing time series. Based soundly 
in dynamical systems theory (Takens 1980), the TSDM 
method reveals hidden temporal patterns in time series 
data by taking advantage of the event nature of many 
problems. 
The search mechanism at the heart of the TSDM method 
is a GA. The details of the GA are briefly discussed. A 
simple GA composed of the following steps is used. 
 While all fitness have not converged 

a) Perform selection, save elite individual. 
b) Crossover population. 
c) Mutate population. 
d) Calculate fitness. 

The GA uses a binary chromosome of length 18, random 
locus crossover, and single individual elitism. The 
stopping criterion for the GA is convergence of all fitness 
values. Both tournament and roulette selection are 
investigated. The tournament selection uses a tournament 
size of two. 
The benchmarks were performed with MATLAB 5.3.1 
running under Windows NT 4.0 Service Pack 5. The 
computation time was obtained with MATLAB’s 
profiling tool, which reports a precision of .016s. The 
hardware environment was a dual Pentium III 450MHz 
with 256MB 100MHz SDRAM, 18GB ultra-IDE hard 
drive, and a 32MB AGP video card. Although the 
hardware contains two processors, MATLAB runs on 
only one processor. 
Now that the problem statement has been discussed, the 
potential solutions will be reviewed. 

3 POTENTIAL SOLUTIONS 
This section discusses the three algorithms used in this 
paper. The key to improving the performance of the GA is 
to reduce the time needed to calculate the fitness. By 
examining the mechanisms of the GA, it is seen that the 
diversity of the population decreases as the algorithm 
runs. The fitness values for the same chromosomes are 
recalculated repeatedly. If previously calculated fitness 
values can be efficiently saved, computation time will 
diminish significantly. 
The data mining problem used in this paper searches for 
temporal patterns in a time series. To find a temporal 

pattern of length two requires chromosomes of length 18. 
This means that the search space contains 218 or 267,144 
members. With this number of members, the fitness 
values could be stored in an array. Although this is not an 
unmanageable size, the problem quickly becomes 
unwieldy for a slightly larger data-mining problem. For 
example, a search for temporal patterns of length four 
requires a chromosome of length 30. This yields a search 
space with more than one trillion members. With current 
technology, it is not feasible to store a 1012 size array 
efficiently. This leads us to consider alternative methods 
for storing the fitness values. 

3.1 HASHING ALGORITHM 
The classic data structure for efficient storage and 
retrieval is the hash table. A discussion of hashing can be 
found in (Manber 1989, pp.78-79). A brief description is 
provided here. 
The interface to a hash table provides two methods. The 
first is put, which takes two parameters – a key and an 
element. The put method stores the element with the 
associated key. The second method is get. It takes one 
parameter, the key, and returns two values – a flag 
indicating if an element was found and the element. 
Internally, the key-element pairs are stored in an array. 
The array is accessed through a hash, which is based on 
the key. Table 1 shows how the data structure is formed.  

Table 1 – Sample Hash Table Extract 

Hash Key Element 

100 1001001 32.5 
101 Null Null 
110 1100010 45.7 

 
A hash is generated from the key. For this problem, the 
hash is created by taking the first n bits of the 
chromosome, where 2n is the size of the hash table. 
As more elements are stored in the hash table, the same 
hash must be used for representing two distinct elements. 
This is called a collision. As collisions mount, the 
efficiency of the hash table degrades from O(1) to O(n). 
To avoid this performance degradation, a count of the 
number of collisions is maintained. Once the number of 
collisions exceeds the size of the hash table, a rehash is 
performed. Normally, a rehash involves two steps. The 
first step is to create a larger hash table. The second step 
is to copy the elements from the smaller hash table to the 
larger. The hashing algorithm used here is modified 
because too much time is spent on rehashing. The 
rehashing mechanism is modified by taking advantage of 
the diversity reduction that occurs as a GA runs. Only the 
first step of creating a larger hash table is done. The 
smaller hash table is destroyed. This seems counter-



 

 

intuitive because all of the known fitness values are lost. 
But since the diversity decreases as the GA runs, many of 
the eliminated key-element pairs will not be needed. The 
GA diversity is decreasing, so the chromosome values 
will be quickly recalculated. The hash table will fill up 
again with the most used key-element pairs. 

3.2 KEEP LAST GENERATION ALGORITHM 
The next technique is based on the hash table approach, 
but only the previous generation of fitness values is 
stored. Because only the previous generation is stored and 
the size of GA populations used in this paper are 10 and 
30, the hash table size is set to 256. This is a significantly 
smaller hash table than the one used in the hashing 
algorithm approach, which starts with a size of 4,096 and 
grows as large as 65,536. 

3.3 BINARY TREE ALGORITHM 
The next algorithm is based on a binary tree. A discussion 
of binary trees can be found in (Manber 1989, pp.71-74). 
A brief description is provided here. The binary tree 
algorithm provides the same two methods as the hashing 
algorithm. The first is put, which takes two parameters – a 
key and an element. The put method stores the element 
with the associated key. The second method is get. It 
takes one parameter, the key, and returns two values – a 
flag indicating if an element was found and the element. 
The main difference between the binary tree algorithm 
and the hashing algorithm is the data structure used to 
store the key-element pairs. The hashing algorithm uses 
an array, whereas the binary tree algorithm uses a binary 
tree. An example binary tree is shown in Figure 1. 
 

Figure 1 – Sample Binary Tree 

The put method starts by setting the current node to be the 
root of the binary tree. The put method compares the key 
to current node of the tree. If the key matches the node, 
the put method stops. If the key is greater than the current 
node and there is a left branch, the left branch node 
becomes the current node and the search continues. If 
there is no left branch, a new node is created as the left 
branch with a value equal to the key and the element as an 
attribute. If the key is less than the current node, the right 
branch node becomes the current node and the search 
continues. If there is no right branch, a new node is 

created as the right branch with a value equal to the key 
and the element as an attribute. 
The get method starts by setting the current node to be the 
root of the binary tree. The get method compares the key 
to current node of the tree. If the key matches the node, 
the element stored with that node is returned. If the key is 
greater the current node, the left branch node becomes the 
current node and the search continues. If the key is less 
than the current node, the right branch node becomes the 
current node and the search continues. If there are no 
branches off the current node, the get method reports that 
the search failed. 
Now that the three algorithms have been presented, the 
results of applying these algorithms to the test problem 
are given. 

4 RESULTS 
This section discusses results of applying the three 
algorithms to the test problem. The results show that each 
of the algorithms provides a performance improvement 
across population size, mutation, and type of selection. 
The performance improvements are statistically 
significant and not artifacts of the number of generations. 
Each data point in the following tables represents the 
results of 100 trials. 
In Table 2 and Table 3, the mean and standard deviation 
computational performance measured in seconds is 
compared for tournament selection. For all combinations 
of population size (Pop.) and mutation (Mut.), the hashing 
algorithm is 2.3-3.8 times faster the simple GA. The keep 
last algorithm is 2.2-3.1 times faster the simple GA. The 
binary tree algorithm is 1.8-2.6 times faster the simple 
GA. 

Table 2 – Mean Computational Performance for 
Tournament Selection (s) 

Pop. Mut. None Binary Tree Keep Last Hashing 

10 0 6.35 3.46 2.93 2.73 
30 0 39.8 21.5 17.2 16.7 
10 0.02 39.4 15.4 12.8 10.3 

Table 3 – Standard Deviation Computational Performance 
for Tournament Selection (s) 

Pop. Mut. None Binary Tree Keep Last Hashing 

10 0 1.49 0.820 0.609 0.497 
30 0 9.10 4.81 3.16 3.11 
10 0.02 26.5 10.3 7.55 4.55 
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In Table 4 and Table 5, the probability of a making a 
Type I Error (incorrectly stating that the computational 
time is greater when it is not) is shown. The one tail 
difference of two independent means statistical test is 
used. In only one case is the statistical significance 
suspect. That is when the computational time for the keep 
last algorithm is statistically greater than the 
computational time for the hashing algorithm when the 
GA population was 30 and the mutation rate 0. 

Table 4 – Probability of Type I Error (α) for Tournament 
Selection Computational Performance, Part I 

Pop. Mut. None > 
Binary Tree

None > 
Keep Last 

None > 
Hashing 

10 0 1.62x10-65 6.33x10-101 3.23x10-118 
30 0 1.26x10-70 5.96x10-122 1.27x10-127 
10 0.02 1.53x10-17 2.23x10-22 1.53x10-27 

Table 5 – Probability of Type I Error (α) for Tournament 
Selection Computational Performance, Part II 

Pop. Mut. Binary Tree 
> Keep Last  

Binary Tree 
> Hashing 

Keep Last > 
Hashing 

10 0 1.27x10-7 2.08x10-14 5.91x10-3 
30 0 2.35x10-14 1.71x10-17 1.35x10-1 
10 0.02 1.98x10-2 3.14x10-6 2.78x10-3 

 
In Table 6 and Table 7, the mean and standard deviation 
number of generations is presented. 

Table 6 – Mean Number of Generations for Tournament 
Selection 

Pop Mut. None Binary Tree Keep Last Hashing 

10 0 7.72 8.37 8.03 7.83 
30 0 15.8 15.8 15.6 16.4 
10 0.02 46.0 46.7 40.4 45.8 

Table 7 – Standard Deviation Number of Generations for 
Tournament Selection 

Pop Mut. None Binary Tree Keep Last Hashing 

10 0 1.75 2.27 1.98 1.60 
30 0 3.60 4.07 3.49 4.39 
10 0.02 30.8 37.2 28.6 30.4 

 

Table 8 and Table 9 show the probability of making a 
Type I Error in saying that the number of generations is 
different. Using the two tail difference of two independent 
means statistical test, none of the number of generations is 
statistically different from one another. This provides 
further assurance that the differences in computational 
performances are statistically significant and not artifacts 
of the number of generations. 

Table 8 – Probability of Type I Error (α) for Tournament 
Selection Generations, Part I 

Pop Mut. None ≠ 
Binary Tree 

None ≠ 
Keep Last 

None ≠ 
Hashing 

10 0 0.023 0.240 0.643 
30 0 0.985 0.675 0.260 
10 0.02 0.890 0.180 0.952 

Table 9 – Probability of Type I Error (α) for Tournament 
Selection Generations, Part II 

Pop Mut. Binary Tree ≠ 
Keep Last  

Binary Tree 
≠ Hashing 

Keep Last 
≠ Hashing 

10 0 0.259 0.052 0.432 
30 0 0.682 0.292 0.130 
10 0.02 0.180 0.847 0.198 

 
In Table 10 and Table 11, the mean and standard 
deviation computational performance measured in 
seconds is compared for roulette selection. As for 
tournament selection, the order of computation 
improvement was the hashing algorithm, the keep last 
algorithm, and the binary tree algorithm. The hashing 
algorithm is 3.4-4.4 times faster than the simple GA. The 
keep last algorithm is 2.8-3.8 times faster the simple GA. 
The binary tree algorithm is 2.3-2.6 times faster the 
simple GA. 

Table 10 – Mean Computational Performance for 
Roulette Selection (s) 

Pop Mut. None Binary Tree Keep Last Hashing 

10 0 12.7 4.93 3.95 3.73 
30 0 89.5 33.8 23.4 20.4 
10 0.02 115. 50.3 40.8 28.3 

 



 

 

Table 11 – Standard Deviation Computational 
Performance for Roulette Selection (s) 

Pop Mut. None Binary Tree Keep Last Hashing 

10 0 7.40 1.82 1.32 1.18 
30 0 55.4 12.8 7.24 5.89 
10 0.02 125. 42.4 36.2 17.6 

 
In Table 12 and Table 13, the probability of a making a 
Type I Error is shown. Again, in only one case is the 
statistical significance suspect. That is when the 
computational time for the keep last algorithm is 
statistically greater than the computational time for the 
hashing algorithm when the GA population was 10 and 
the mutation rate 0. 

Table 12 – Probability of Type I Error (α) for Roulette 
Selection Computational Performance, Part I 

Pop Mut. None > 
Binary Tree 

None > 
Keep Last 

None > 
Hashing 

10 0 1.14x10-24 1.56x10-31 2.90x10-33 
30 0 5.37x10-23 1.35x10-32 1.11x10-35 
10 0.02 5.14x10-7 6.60x10-9 3.93x10-12 

Table 13 – Probability of Type I Error (α) for Roulette 
Selection Computational Performance, Part II 

Pop Mut. Binary Tree 
> Keep Last 

Binary Tree 
> Hashing 

Keep Last > 
Hashing 

10 0 6.94x10-6 1.54x10-8 1.02x10-1 
30 0 9.62x10-13 9.00x10-22 5.33x10-4 
10 0.02 4.35x10-2 7.82x10-7 9.58x10-4 

 
Table 14 and Table 15 present the mean and standard 
devation of the number of generations for roulette 
selection. 

Table 14 – Mean Number of Generations for Roulette 
Selection 

Pop Mut. None Binary Tree Keep Last Hashing 

10 0 15.4 15.4 15.1 15.7 
30 0 35.5 33.8 33.8 34.5 
10 0.02 135. 155. 135. 146. 

Table 15 – Standard Deviation Number of Generations for 
Roulette Selection 

Pop Mut. None Binary Tree Keep Last Hashing 

10 0 9.05 7.81 8.31 8.61 
30 0 21.8 17.7 20.7 20.2 
10 0.02 146. 149. 128. 115. 

 
In Table 16 and Table 17, it is seen that number of 
generations cannot be said to be statistically different 
between the various algorithms for roulette selection. 

Table 16 – Probability of Type I Error (α) for Roulette 
Selection Generations, Part I 

Pop Mut. None ≠ 
Binary Tree 

None ≠ 
Keep Last 

None ≠ 
Hashing 

10 0 0.973 0.782 0.817 
30 0 0.548 0.566 0.752 
10 0.02 0.336 0.997 0.550 

Table 17 – Probability of Type I Error (α) for Roulette 
Selection Generations, Part II 

Pop Mut. Binary Tree 
≠ Keep Last  

Binary Tree 
≠ Hashing 

Keep Last ≠ 
Hashing 

10 0 0.793 0.777 0.599 
30 0 0.988 0.780 0.785 
10 0.02 0.304 0.633 0.514 

 
This section showed that each of the three algorithms 
provides statistically significant performance 
improvement across population size, mutation, and type 
of selection. It also shows that the hashing algorithm 
provides the greatest performance improvement. It is 
between 2.3-4.4 times faster than the simple GA. 

5 CONCLUSION 
Modification of the simple GA to save previously 
computed fitness values provides significant performance 
improvements. This was demonstrated with three 
different methods for storing the fitness values including a 
binary tree algorithm, keep last algorithm, and a hashing 
algorithm. The hashing technique, at 2.3-4.4 times faster 
than the simple GA, provides the greatest performance 
improvement. 
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