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ABSTRACT

A novel method for speech recognition is presented, utiliz-
ing nonlinear/chaotic signal processing techniques to extract
time-domain based, reconstructed phase space features. This
work examines the incorporation of trajectory information into
this model as well as the combination of both MFCC and RPS
feature sets into one joint feature vector. The results demon-
strate that integration of trajectory information increases the
recognition accuracy of the typical RPS feature set, and when
MFCC and RPS feature sets are combined, improvement is
made over the baseline. This result suggests that the features
extracted using these nonlinear techniques contain different
discriminatory information than the features extracted from
linear approaches alone.

1. INTRODUCTION

In our previous work [1, 2], we demonstrated the use of re-
constructed phase space (RPS) features for speech recognition
tasks. We formulated the RPS feature vector, built statistical
models over those features for classification, and compared
our nonlinear methods to a baseline recognizer that used the
traditional MFCC feature set [3] on an isolated phoneme clas-
sification task over the TIMIT corpus. The purpose of this
work is two-fold. First, we explore the incorporation of tra-
jectory information into our feature vector using delta coef-
ficients, high-dimensional RPSs, and first difference coeffi-
cients. Second, we extend the nonlinear methods we devel-
oped, in order to combine the new features with the traditional
MFCC feature set to achieve a boost in accuracy over what
each feature vector could possibly do in isolation. With this
objective in mind, we briefly describe the methodology that
was established in our previous work.

The central premise of the nonlinear techniques presented
here is that RPSs retain the nonlinear dynamics of a speech
time series. A RPS is produced by establishing vectors in R

d

whose elements are time-lagged versions of the original time
series. If the original time series is given by x[n] or xn, where
n = 1, 2, 3 . . . N , then its corresponding RPS representation
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Figure 1: Reconstructed phase space plot of the phoneme
’/ow/’

is given by

xn = [ xn xn−τ xn−2τ . . . xn−(d−1)τ ] (1)

n = 1 + (d − 1)τ, 2 + (d − 1)τ, 3 + (d − 1)τ, . . . N

where, τ is the time lag and d is the embedding dimension.
RPSs have a strong theoretical justification provided in the
nonlinear dynamics literature, and have been proven to be
topologically equivalent to the original phase space of the gen-
erating system [4, 5]. Given this fact, the features extracted
from RPSs may contain more and/or different discriminatory
information than the typical spectral features, which are rooted
in linearity assumptions of the underlying signal. A typical
RPS plot of a speech phoneme is given below, where d = 2
and τ = 6 . As evident from the figure, geometric structure
appears in the RPS that takes the form of a bounded subset
of orbits as t → ∞. These geometric structures or bounded
subsets of orbits are known as attractors and are revealed in
Figure 1. In order to create a RPS representation of a time se-
ries, the correct choice of time lag and embedding dimension
must be used to ensure proper reconstruction of the dynamics
of the system. Two common methods frequently discussed in
the literature to guide the choice of time lag are the first zero
of the autocorrelation function and the first minimum of the
automutual information curve [6]. Such criteria endeavor to
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reduce the information redundancy between the lagged ver-
sions of the time series. By examining these criteria, we es-
tablished that τ = 6 was an appropriate value for subsequent
analysis [1, 2]. To establish the embedding dimension, a well-
known algorithm called false nearest neighbors [6] was used,
which tabulates the percentage of false crossings to determine
when the attractor is unfolded. By examination of a large sam-
ple of training set phonemes from TIMIT, it was determined
that d = 5 and d = 10 were a suitable values for most of the
subsequent analysis.

The feature set that was extracted [1, 2] is used in the esti-
mation of a quantity known as the natural distribution or nat-
ural measure of an attractor [7, 8]. The natural distribution is
defined as the fraction of time that the trajectories spend in a
particular neighborhood of the RPS as t → ∞ and the size of
the RPS neighborhood regions goes to zero (V d → 0). For
experimental data, an estimate of the natural distribution can
be performed with a Gaussian Mixture Model (GMM) built
over the feature vectors, which are the normalized RPS data
points, given by

x(d,τ)
n =

xn − µx

σr
(2)

where xn are vectors that constitute the RPS, µx is the mean
vector (centroid of attractor), and σr is the standard deviation
of the radius in the RPS defined below,

µx
∆= 1

N−(d−1)τ

N∑
n=1+(d−1)τ

xn

σr
∆=

√
1

N−(d−1)τ

N∑
n=1+(d−1)τ

‖xn − µx‖2
.

(3)

The µx serves to zero-mean each phoneme attractor, while σr

normalizes out amplitude variation from phoneme to phoneme.
It is clear from Equation (2) that the natural distribution

estimate, which is obtained by building a Gaussian Mixture
Model over the normalize RPS vectors, endeavors to capture
the time evolution of the attractor as the distinguishing char-
acteristic of speech phonemes. This estimate attempts to dis-
criminate phonemes on the premise that the natural distribu-
tion and its attractor structure (or part of it), remains consis-
tent for utterances of the same phoneme, while differing in
an appreciable way among utterances of different phonemes.
It is reasonable to assert this, because the system dynamics
of the speech production mechanism, as captured through the
natural distribution, would represent a particular phoneme ut-
terance, and that some portion of the dynamics would approx-
imately remain constant for a particular utterance of the same
phoneme. The RPS feature vector then with τ = 6, d = 5, is
denoted by x(5,6)

n .

2. TRAJECTORY INFORMATION

Now that we have established the formulation of the RPS fea-
ture vector provided in [1], consideration is given to how to in-
tegrate the attractors’ trajectory into the feature vector. While
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Figure 2: RPS of a typical speech phoneme demonstrating
the natural distribution as well as trajectory information

this natural distribution estimate does capture the position of
the points in the RPS, it does not capture the flow or trajectory
as the attractor evolves as illustrated Figure 2.

The trajectory information also can have discriminatory
ability and can be appended to the feature vector given in
Equation (2) using both first difference and delta coefficients.
The feature vectors that contain the trajectory information are
given by

x(d,τ,&fd)
n =

[
x(d,τ)

n x(d,τ)
n − x(d,τ)

n−1

]

x(d,τ,&∆)
n =

⎡
⎣ x(d,τ)

n

Θ∑
θ=1

θ
(

x(d,τ)
n+θ −x(d,τ)

n−θ

)

2
Θ∑

θ=1
θ2

⎤
⎦ .

(4)

A Gaussian Mixture Model built over these features vec-
tors jointly models both the natural distribution as well as the
trajectory information. It should be pointed out that the fea-
ture vectors in Equation (4) also constitute a valid RPS, since
the trajectory information is a simply a linear combination of
time-delayed versions of the signal, which are also covered
under the theory of RPS reconstruction. Given this fact, one
would correctly interpret a GMM built over such a feature vec-
tor as again an estimate of the natural distribution, but over a
different RPS, which was created using both the original vec-
tors as well as trajectory dimensions. For comparison pur-
poses then, a feature vector that is 10 dimensional, x(10,6)

n , is
also used to determine whether an intelligent choice of RPS
dimensions (first difference and deltas in this case) has any
impact on recognition accuracy as compared to an any arbi-
trary/native RPS such as x(10,6)

n .

3. JOINT FEATURE VECTOR

The RPS features can also be used in unison with the MFCC
feature set to create a joint or composite feature vector. The
reason for creating the joint feature vector is that the RPS
feature set should increase classification accuracy, given that
the information content between the two is not identical. The
joint feature vector is given in Equation (5), where x(d,τ,&∆)

n

is given in Equation (4) and Ot is the typical MFCC feature
set (12 MFCCs, energy, deltas, and delta-deltas).

yn =
[

x(d,τ,&∆)
n Ot

]
, (5)
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The x(d,τ,&∆)
n feature vector was chosen for this purpose,

since it achieved the best performance as demonstrated in Sec-
tion 5.

There are two central issues that arise when assembling
the joint feature vector: probability scaling and feature vector
rate mismatch. The first issue arises due to the fact that the two
feature sets each reside in their own unique feature space with
distinct characteristics and likelihoods. This difficulty will be
addressed in the next section. The second issue is the result
of the fact that there is a RPS feature for each time sample ex-
cept endpoints, while there is one MFCC feature vector each
analysis window; meaning that, there are approximately 160
RPS features for every 1 MFCC feature vector with an anal-
ysis window of 160 time samples. There are several possible
ways to address this issue; in this work we simply replicate (or
zero-order holding) the MFCCs for every RPS derived feature
vector in the spectral analysis window.

4. MODELING TECHNIQUE

Statistical modeling of the RPS features was done using the
HTK toolset [9]. The model choice for both the RPS derived
features and MFFC features sets was a simple one state HMM
with a GMM state distribution [1, 2]. For the task of isolated
phoneme classification undertaken here, this model choice is
justified because this task requires a less complex model than
that used during continuous recognition. The number of mix-
tures for the RPS features is set at 128. This number was de-
rived empirically by examination of the accuracy versus num-
ber of mixtures curve described in [1]. The number of GMM
mixtures necessary to achieve a high quality distribution es-
timate of is quite high, because a large number is required to
properly capture the complex natural distribution and attractor
structure. An example of GMM modeling of the RPS features
is shown in Figure 3. As evident, the GMM clusters accurately
adjust to the attractor shape in the RPS.

Figure 3: GMM clusters and modeling of the RPS features

As aforementioned, the joint feature vector must be mod-
eled appropriately, because its components (RPS and MFCC)

have completely different characteristics and time scales. To
address this issue, the joint feature vector is modeled using
two different streams, which can be implemented easily in the
HTK architecture. One stream is for the natural distribution
and other stream is for the MFCC features. The stream model
of the GMMs is given by the equation

|b (yn)| =

(1−ρ) log
∣∣∣∣ M1∑
m=1

wm,1 N
(
yn,1 ; µm,1 ,Σm,1

)∣∣∣∣
+ ρ log

∣∣∣∣ M2∑
m=1

wm,2 N
(
yn,2 ; µm,2 ,Σm,2

)∣∣∣∣
(6)

where 0 ≤ ρ ≤ 1. The ρ in the equation above is the stream
weight, which must be determined empirically to ensure that
the evaluation of the two distributions is scaled properly, since
the number of mixtures required for the two features sets vary
drastically (128 for the RPS features and 16 for the MFCC
feature set). Upon inspection of Equation (6), it is apparent
ρ = 1 is equivalent to the baseline MFFC feature set system,
while ρ = 0 is equivalent to x(d,τ,&∆)

n feature set.

5. EXPERIMENTS

In order to investigate the performance of the RPS feature vec-
tors, isolated phoneme classification experiments were per-
formed over the TIMIT corpus. Phonemes were extracted
from the ”SI” and ”SX” sentences using the preexisting pho-
netic transcriptions and time stamps. The original set of 64
phonetic units is grouped to form 48 phoneme classes and then
the accuracies of the 48-class set are folded into 39 classes for
testing using the conventions discussed in [10]. To discover
the proper stream weight, the testing accuracy was found as
a function of ρ. As illustrated in Figure 4, the peak accuracy
occurs at ρ=0.25.
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Figure 4: Testing accuracy vs. stream weight for the joint
feature vector

The first experiments examined the question of how the
RPS feature vectors that incorporate trajectory information
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compare to the RPS feature vector without trajectory infor-
mation. The feature set that contained the deltas performed
better then both the 5-d and 10-d feature sets. The second set
of experiments explored how the joint vector results compared
to the baseline. When comparing all of the feature vectors to-
gether, the joint feature vector delivered the best performance
achieving 2.99 % improvement over the baseline.

Feature Set Test Set
Accuracy

x(5,6)
n - RPS features capturing

natural distribution

31.43%
(15017)

x(10,6)
n - RPS features capturing

natural distribution

34.02%
(16353)

x(5,6,&fd)
n - RPS features capturing

natural distribution with first
difference trajectory information
appended

38.06%
(18296)

R
P
S

fe
at

ur
e

se
ts

x(5,6,&∆)
n - RPS feature capturing

natural distribution with delta
trajectory information appended

39.19%
(18840)

ct - 12 MFCC features 50.34%
(26372)

B
as

el
in

e

Ot - 12 MFCCs, energy, delta,
delta-deltas

54.86%
(24199)

Jo
in

t
fe

at
ur

e

yn, ρ=0.25 - RPS feature capturing
natural distribution with delta
trajectory information appended &
12 MFCCs, energy, delta,
delta-deltas

57.85%
(27810)

Table 1: Performance comparison of the feature sets (48072
total testing examples)

6. DISCUSSION AND CONCLUSIONS

The first set of experiments demonstrate that the incorporation
of trajectory information significantly boosts the accuracy of
the RPS features by more than 7%. This shows that an in-
telligent choice of the embedding dimensions of the RPS can
produce better accuracy as evident from the fact that the con-
ventional d = 10, RPS feature vector (x(10,6)

n ) was inferior
to the feature vectors that contained trajectory information.
The results also demonstrate that using RPS features in unison
with traditional MFCC features yield improvement over the
baseline alone. This result suggests that the nonlinear meth-
ods are capturing information that the MFCC features neglect

that could aid in the discrimination of speech phonemes. Ad-
ditional future work will investigate the effects of amplitude
scaling issues, higher dimensional RPS features, and the use
of the RPS features in a continuous speech recognizer. Over-
all, the results show that the RPS features are an interesting
technique to explore for increasing speech recognition accu-
racy.
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