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Abstract—This paper develops the fundamental foundations
of a technique for detection of faults in induction motors that is
not based on the traditional Fourier transform frequency domain
approach. The technique can extensively and economically char-
acterize and predict faults from the induction machine adjustable
speed drive design data. This is done through the development
of dual-track proof-of-principle studies of fault simulation and
identification. These studies are performed using our proven Time
Stepping Coupled Finite Element-State Space method to generate
fault case data. Then, the fault cases are classified by their inherent
characteristics, so-called “signatures” or “fingerprints.” These
fault signatures are extracted or mined here from the fault case
data using our novel Time Series Data Mining technique. The
dual-track of generating fault data and mining fault signatures
was tested here on three, six, and nine broken bar and broken
end-ring connectors in a 208-volt, 60-Hz, 4-pole, 1.2-hp, squirrel
cage 3-phase induction motor.

Index Terms—Artificial intelligence, data mining, diagnostics
through torque profiles, dynamical systems analysis, electric
drives, fault diagnosis, induction motors, state space methods,
time series, time stepping finite elements.

I. INTRODUCTION

T HREE-PHASE induction motors are presently in common
use as the machine of choice in a majority of electronically

controlled adjustable/variable speed drives (ASDs). During the
past twenty years, there have been continuing efforts at studying
and diagnosing of induction motor faults and associated per-
formance characteristics [1]. As stated in [1] “performing re-
liable and accurate fault detection and diagnosis requires un-
derstanding the cause and effect of motor faults to motor per-
formance.” Accordingly, this paper demonstrates a method for
detection of faults in induction machine adjustable speed drives
(IMASDs).

Our approach to the problem of diagnosing faults in IMASDs
is new and unique. First, we can generate data for a plethora of
fault conditions by Time Stepping Coupled Finite Element-State
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Space (TSCFE-SS) [2]–[6] simulations without the need to en-
counter and acquire data for faults in actual field experience with
IMASDs. Second, through Time Series Data Mining (TSDM)
[7], [8] data searching for hidden patterns and nuances of dif-
ferences between healthy performance and various fault signa-
tures are automatically and efficiently carried out. These hidden
patterns and nuances are made use of in fault identification.

This paper presents the development of the conceptual frame-
work and proof-of-principle for a comprehensive set of algo-
rithms for fault simulation, and fault identification/diagnosis in
IMASDs. This proactive approach can head off the costly and
catastrophic cascading of faults that lead to plant shutdowns and
consequent long repair/maintenance periods. The resulting fault
identification and diagnostic information also can facilitate the
creation of efficient and effective maintenance schedules. The
faulty operations include, but are not restricted to the following.

1) Broken bars and/or end-ring connectors in the squirrel-
cages of induction motors [2].

2) Dynamic and static airgap eccentricities arising from as-
sembly defects or subsequent mechanical/bearing prob-
lems that may develop in the field during operation [3].

3) Phase unbalances in stator armatures developing due to
partial internal turn-to-turn short circuits, or phase un-
balances resulting from unbalances in the inverter power
electronic portion of a drive, or other phase voltage un-
balances due to factors external to IMASD systems.

In this paper only the first type of these faults, namely broken
squirrel-cage bars and end-ring connectors, are addressed.

The study of the effects of such faulty operations occurs
through a dual track. The first track generates databases of fault
signature profiles through TSCFE-SS simulation of healthy and
faulty modes of operation of IMASDs [2]–[6]. The advantage
of this method lies in its rigor in predicting effects of motor
faults, that could include the incipient variety, on performance.
The second track identifies and extracts hidden patterns and
nuances that are characteristic and predictive of faults and
incipient faults through TSDM [7], [8] of the fault signatures.

II. TIME STEPPINGCOUPLED FINITE ELEMENT-STATE

SPACE METHOD

The TSCFE-SS technique computes on a time instant-by-in-
stant basis the input phase and line currents, voltages, and de-
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Fig. 1. Functional block-diagram/flow chart of the TSCFE-SS method.

veloped powers (torque) of a motor as functions of the partic-
ular magnetic circuit, winding layouts, and materials as well
as inverter (power conditioner) operating conditions. Computa-
tions include ohmic and magnetic core losses as well as the ef-
fects due to modern fast electronic switching on overall motor-
controller/drive interaction and resulting performance [6], [9].
Thus, the TSCFE-SS algorithms can also be used in parametric
studies.

The TSCFE-SS model fully incorporates the nonlinear effects
of magnetic saturation in the machine and makes full use of
the natural machine winding’s frame of reference [2]–[6]. (See
Fig. 1 for the functional flow chart block diagram summarizing
the essence of this approach.) Hence, this assures inclusion of
all significant space harmonics due to the physical design and
nonlinear nature of the motor, as well as the time harmonics
generated from the inverter switching, in the motor-drive mod-
eling and simulations. Accordingly, the simulated fault signa-
tures are derived from time domain phase current, and voltage
waveforms, as well as from simulated instantaneous torque pro-
files that rigorously incorporate the motors’ design characteris-
tics.

The validity of this simulation was verified by actual labo-
ratory tests results on balanced sinusoidal three-phase, 208-volt
(line-to-line) and inverter sources, which were reported in detail
in [4]–[6], [10], and [11].

The TSCFE-SS algorithm was applied to the 1.2 hp,
four-pole, 60 Hz case study motor, Fig. 2, to simulate two
types of faults, first: three, six, and nine adjacent broken

Fig. 2. Motor cross section.

squirrel-cage bars, and second: three, six, and nine adjacent
broken squirrel-cage end-ring connectors.

The TSCFE-SS based model was used to generate the neces-
sary database of motor current, voltage, and torque waveforms
and profiles under healthy and faulty motor conditions, as will
be detailed below in the section on applications and results.

III. T IME SERIESDATA MINING METHOD

The TSDM technique extracts fault signatures indicative of
faults from the waveforms generated by the TSCFE-SS module.
The TSDM method overcomes limitations (including station-
arity and linearity requirements) of traditional time series anal-
ysis techniques by adapting data mining concepts for analyzing
time series. Based soundly in dynamical systems theory [12],
the TSDM method reveals hidden patterns in time series data.
Here, the time series data are the current and voltage waveforms,
as well as time-domain torque profiles.

A process called time-delay embedding [13] is used to trans-
form the current waveforms and torque profiles (time series)
into reconstructed state spaces, also called phase-spaces. Given
the current time series, , where is
a time index, and is the number of observations, a two-di-
mensional (2-D) phase-space is created by plotting
on the – plane’s abscissa and on the ordinate. Simi-
larly, given the torque time series (time-domain torque profile),

, where again is a time index, and
is the number of observations, a 2-D phase-space is created

by plotting on the – plane’s abscissa and on
the ordinate.

In this investigation, this time delay embedding process was
also applied to the time series of the torque first differences,

. These results are presented in Sec-
tion IV of applications.

Takens [12] proved that a reconstructed phase-space can
be topologically equivalent to the original system state space.
Given an original state space dimensiona sufficient con-
dition for topological equivalence is that the reconstructed
phase-space be dimensionally greater than . We have
also shown empirically in [7], [14], and [15] that characteristic
features of a high dimensional system can be identified in low
2- or 3-D reconstructed phase-spaces.
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Fig. 3. Phase current for healthy motor.

The feature used for distinguishing between reconstructed
phase-spaces generated for different healthy and faulty modes
of motor operation is the radius of gyration around the center of
mass [16] of the points in the phase-space where each point in
the phase-space is given a unit mass. The radius of gyration is
calculated as follows:

(1)

where

(2)

(3)

is the time lag of the phase space,is the number of obser-
vations, and is the time series observation at time index.
The value is the distance of theth phase-space point from
the center of mass of the phase-space points. Since we are using
a 2-D phase-space, which is formed by plotting on
the – plane’s abscissa and on the ordinate, the square of
the distance is calculated by summing the squares of the differ-
ences between the phase-space point’s value in each dimension
and its corresponding center of mass for that same dimension.
The value is the center of mass for each phase-space dimen-
sion.

This feature is a sufficient first approximation of the phase-
space to allow identification of all healthy and faulty modes of
operation. The decision rule for determining the mode of oper-
ation is defined as follows:

(4)

where, are the radii of gyration of the known
modes, is the radius of gyration for the unknown mode, and
the index operator returns the “index of the mode” with the
closest radius of gyration to the unknown mode.

IV. A PPLICATIONS AND RESULTS

A. TSCFE-SS Simulations

The phase current waveforms for the healthy motor case and
the cases with three broken bars as well as three broken connec-
tors are given here in Figs. 3–5, respectively, (see [2], [9], and
[11].

The modulation envelopes that appears in the current wave-
forms, Figs. 4 and 5, are due to the local heavy magnetic satu-

Fig. 4. Phase current for three broken bars.

Fig. 5. Phase current for three broken connectors.

Fig. 6. Flux plot indicating the magnetically-induced “apparent saliency”
effect.

ration appearing in locations within the rotor in the vicinity of
bar/connector breakages. This heavy saturation is due to the ab-
sence of the demagnetizing effects of the rotor cage currents,
which in normal healthy cages bucks the magnetizing effect of
the stator mmf in these locations. A comparison between the
healthy motor’s flux plot Fig. 6 and the flux plot for the three
broken bar case, Fig. 7, demonstrates this localized rotor satu-
ration phenomenon surrounding the region housing the broken
bars.

The time-delay embedding process, described above, was ap-
plied to these phase current time series for the healthy, 3-broken
bar, and 3-broken connector cases, and the resulting phase space
plots are given in Figs. 8–10.

On a one-to-one correspondence basis, the reader can dis-
tinctly see a difference in pattern between the healthy cage case
of Fig. 8 and the two faulty cage cases of Figs. 9 and 10. How-
ever, a distinction between the patterns of the phase-space for
the three broken bars, Fig. 9 and the phase-space for the three
broken connectors, Fig. 10 is not at once obvious.
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Fig. 7. Flux plot for the case of three broken bars.

Fig. 8. Healthy motor current phase-space.

Fig. 9. Three broken bars current phase-space.

These authors found that such ambiguity between
phase-space patterns is absent in the phase-space obtained from
the time-domain torque profile first differences. Hence, the
emphasis in this work from this point forward is placed on the
time-domain torque profile first difference data.

The TSCFE-SS model simulation resulted in time-domain
torque profiles [2], [11], for the healthy motor in Fig. 11, as
well as the three, six, and, nine broken bar cases as given in
Figs. 12–14, respectively. Meanwhile, the torque profiles for
three, six, and nine broken connectors are given in Figs. 15–17,
respectively.

Comparison of the healthy torque profile of Fig. 11 with an
average torque value of 2.70 Nm, with the profiles of the three,

Fig. 10. Three broken connectors current phase-space.

Fig. 11. Torque profile for the healthy motor.

Fig. 12. Torque profile for three broken bars.

Fig. 13. Torque profile for six broken bars.

six, and nine broken bar cases in Figs. 12–14, with average
torque values of 2.17, 2.07, and 2.12 Nm, respectively, reveals
the degradation of developed torque averages. In addition, one
cannot help but observe the worsening of torque ripple magni-
tudes and harmonic content. A similar comparison between the
healthy motor torque profile of Fig. 11 with the three torque
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Fig. 14. Torque profile for nine broken bars.

Fig. 15. Torque profile for three broken connectors.

Fig. 16. Torque profile for six broken connectors.

profiles in Figs. 15–17, for the three, six, and nine broken con-
nectors with torque averages of 1.96, 1.80, and 1.60 Nm, re-
spectively, reveals the even more adverse (deleterious) global ef-
fect on the current flow in the cage that broken connectors have
on the machine performance. This is revealed in the more dra-
matic average torque value degradations, and the quality of se-
vere torque ripples. All these unhealthy cage cases reveal mod-
ulated envelopes resulting from localized rotor lamination satu-
ration in the neighborhood of these breakages. Naturally, these
localized breakage-associated saturation regions are traveling at
the rotor speed, while the overall magnetic field pattern travels
at the synchronous speed. This causes the resulting electromag-
netic/electromechanical effects on the stator windings to reveal
themselves in the waveforms and time-domain profiles at slip
speed (slip frequency).

The time-delay embedding process summarized in Section III
above was applied to these torque time series, and the resulting
phase space plots will be shown and discussed in Section V of
this paper.

Fig. 17. Torque profile for nine broken connectors.

Fig. 18. Healthy motor torque first difference phase-space.

Fig. 19. Three broken bars torque first difference phase-space.

Fig. 20. Six broken bars torque first difference phase-space.

B. TSDM Fault Patterns

In this section, we present the results of the TSDM method
for characterizing and identifying the various healthy and faulty
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Fig. 21. Nine broken bars torque first difference phase-space.

Fig. 22. Three broken connectors torque first difference phase-space.

Fig. 23. Six broken connectors torque first difference phase-space.

modes of operation. To improve the ability to distinguish be-
tween the various modes of operation a torque first difference
time series, , was generated from
each of the seven torque time series of Figs. 11–17. Time-delay
embedding was then applied to the torque first difference time
series.

The resulting phase-space of the torque first difference time
series is given for the healthy cage case in Fig. 18. Meanwhile,
the phase-spaces for the three, six, and nine broken bar cases are
given in Figs. 19–21, respectively. Also, the phase-spaces of the
torque first difference for the three, six, and nine broken con-
nector cases are given in Figs. 22–24, respectively. The distinc-
tion in shape between the seven torque first difference phase-
spaces is strikingly obvious at first glance. This suggests that
monitoring of motor torque for fault diagnosis and detection can
be exploited as a powerful diagnostic tool, at least in critical
motor drive systems.

Fig. 24. Nine broken connectors torque first difference phase-space.

TABLE I
RADIUS OF GYRATION FOR TRANINING PHASE-SPACES

TABLE II
RADIUS OF GYRATION FOR TESTING PHASE-SPACES

The radius of gyration [16] for each phase-space is given in
Table I. It is clear that the radius of gyration captures the differ-
ences between the various modes of operation that are clearly
visible in Figs. 18–24. In this case study, all radii of gyration
values for broken bars are greater than those for the healthy case,
while all radii of gyration values for broken connectors are less
than that for the healthy motor.

From the TSCFE-SS model we were able to obtain the time
domain simulations for longer time duration than the one cycle
time series shown in Figs. 11–17 for the torque profile. Thus,
one easily obtains an “out-of-sample” or “test” torque first dif-
ference time series for each of the seven torque profile (torque
first difference) cases analyzed by time delay embedding and
radius of gyration calculations. Accordingly, the radius of gy-
ration as a classifying feature was confirmed in the “out-of-
sample” or “test” version of each motor mode of operation. The
results are shown in Table II, and all compare well on a one to
one correspondence with the values given in Table I, for each
case, respectively.
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TABLE III
ABSOLUTE DIFFERENCESBETWEEN TRAINING AND TESTING RADII

OF GYRATION (�10 )

The results of the classification algorithm are shown in
Table III. The headings for the table are as follows: H—healthy
motor, B3—three broken bars, B6—six broken bars, B9—nine
broken bars, C3—three broken connectors, C6—six broken
connectors, and C9—nine broken connectors, respectively. The
actual mode of operation is given by the first column. The first
row indicates the training radius of gyration that was used. The
cells of the table are the Training radius of gyration (given by
the column heading)—Testing radius of gyration (given by the
row heading). The minimal difference in each row, and thus
the classification, is bolded, and it confirms the validity of the
approach, because of the small magnitudes of these bolded
radii of gyration absolute differences.

In other words, the classification accuracy on the
out-of-sample or testing data is 100%. Beyond the classi-
fication accuracy, the classifications are robust in the sense that
for five of the seven classifications the next nearest class has
absolute difference of radii of gyration that is one to two orders
of magnitude greater than the correct class.

V. SUMMARY AND CONCLUSIONS

This work, which centered on the dual track utilization of
TSCFE-SS modeling and TSDM techniques, to differentiate
and identify various types of squirrel-cage breakages in induc-
tion motors has been shown in this paper to be a very promising
approach for fault diagnostics. It was shown that time-domain
motor torque profiles obtained from TSCFE-SS simulations,
and their first differences can be phase transformed, and their
corresponding phase transformations show distinct pattern
differences for the healthy, three, six, and nine bar breakages.
Furthermore, distinct difference exist between the healthy and
three, six, and nine end ring connector breakages. The bar
breakages and connector breakages can also be easily differ-
entiated from each other. The concept of radius of gyration
applied to the phase transformation of torque profiles also lead
to an excellent quantification method for fault diagnostics. This
approach appears to bear substantial promise for future expan-
sion and use as a powerful fault identification and diagnostics
tool in various motor drives. This approach could be integrated
into a motor’s adjustable speed drive electronics, and could be
very useful in monitoring the health of key motor drives serving
main auxiliary functions in power generation plants and similar
industrial motor drives serving key functions.
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