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Abstract— This paper proposes a short-term load forecasting 

method for natural gas using deep learning. Deep learning has 

proven to be a powerful tool for many classification problems 

seeing significant use in machine learning fields like image 

recognition and speech processing. This paper explores many 

aspects of using deep neural networks for time series forecasting. 

It is determined that the proposed network outperforms 

traditional artificial neural networks and linear regression based 

forecasters. 

Index Terms— Deep learning, deep neural network, regression, 

short-term load forecasting, time-series analysis. 

I. INTRODUCTION 

Short-term load forecasting is important for the day-to-day 

operation of natural gas utilities. Many purchasing decisions 

are made using these forecasts, and there can be high cost to 

both natural gas utilities and their customers if the short-term 

load forecast is inaccurate. If the forecast is low, a gas utility 

may have to purchase gas at a much higher price; if the forecast 

is high, a gas utility may have to store the excess gas. 

Figure 1 illustrates a typical time series of daily load for a 

natural gas utility. The data, seen below, is a weighted 

combination of several metropolitan areas in United States.  

 

Figure 1: Natural gas load versus time for weighted 

combination area (1999-2015). 

Traditionally, short-term load forecasting of natural gas is 

done using a linear regression (LR) and autoregressive 

integrated moving average (ARIMA) models [1]. These models 

perform well on linear stationary time-series, and thus have 

been used successfully for forecasting short-term load, which 

has roughly a linearly relationship with temperature [2]. This 

can be seen in Figure 2. Like many real-world systems, gas 

demand contains nonlinearities. Some of these are easy for a 

proficient forecaster to capture using an LR model by, for 

instance, using heating degree days as an input instead of 

temperature. However, natural gas demand also contains many 

nonlinearities that either cannot be easily captured with LR or 

ARIMA models or are impossible for forecasters to glean from 

the data themselves. The forecasting community’s answer to 

this problem for many years has been using artificial neural 

networks (ANN) in place of, or in conjunction with, linear 

models, as ANNs are able to capture nonlinearities [1], [3], [4]. 

 

 

Figure 2: Natural gas load versus temperature for weighted 

combination area (1999-2015). 

Recently, the machine learning community have been 

successful in replacing ANNs and other nonlinear models with 

deep neural networks (DNN) [5]. Längkvist discusses the use 

of DNNs for problems ranging from video analysis and motion 

capture to speech and music recognition [5]. Functionally, 

DNNs are just large ANNs; the main difference is in the 

training algorithms. ANNs are trained using gradient descent, 

which is computationally intensive. Large neural networks 

trained by gradient descent also are prone to overfitting data 

sets. DNNs avoid both problems by using a restricted 

Boltzmann machine training algorithm to “pre-train” the 

model, followed by a few epochs of gradient descent [6]. 

We will provide a short overview of deep learning and 

DNNs, focusing on aspects of DNNs that are important for 

regression problems. Then we will discuss the inputs and 

architecture of the proposed model. And finally, we will show 
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the results of experiments using the proposed model on 176 

real natural gas operational areas. The DNNs using sigmoidal 

transfer functions will be compared to the performance of an 

ANN forecaster and an LR model. The DNN performs better 

than the other two models.   

II. RESTRICTED BOLTZMANN MACHINES 

Fundamental to understanding DNNs are restricted 

Boltzmann Machines (RBM). This section will describe how 

they work and how they relate to DNNs. 

A. Energy Based Models 

RBMs are energy-based models. This means that for any 

input vector 𝑥 they will have an associated scalar energy based 

on an energy function 𝐸(𝑥). A trained energy-based model 

will have lower energy when given inputs that are expected, 

while having high energy for those that are not. For example, 

in a short-term-load-forecasting system for natural gas, if the 

temperature were given as some extreme value such as 150˚F 

we would expect a trained energy-based model to have high 

energy. For a simple energy-based model the probability 

distribution is given as 

𝑝(𝑥) =
𝑒−𝐸(𝑥)

𝑍
, 

where 

𝑍 = ∑𝑒−𝐸(𝑘)

𝑘

 

and 𝑘 represents the set of all possible inputs to the energy-

based model. This simply means that the probability of vector 

𝑥 is equal to the exponential of the energy function divided by 

the sum of the exponentials of each possible vector. The goal 

in training the energy-based model is to have the probability 

distribution 𝑝(𝑥) be as close as possible to the actual 

probability distribution of the inputs.  

B. Energy Based Models with Hidden Layers 

For more complicated energy-based models like RBMs we 

may have hidden units as in Figure 3. For these models, the 

calculation becomes slightly more complicated as we must 

calculate the energy associated with a visible input 𝑣 for each 

of the hidden units ℎ. This probability distribution is given as 
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Figure 3: A restricted Boltzmann machine with four visible 

units and three hidden units. Note the similarity with a single 

layer of a neural network. 
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Figure 4: Visual representation of hidden and visible layer 

calculations. Note the similarity between these and the 

neurons of an artificial neural network. 

𝑝(𝑣) = ∑𝑝(𝑣, ℎ) = ∑
𝑒−𝐸(𝑣,ℎ)

𝑍
ℎℎ

 

 

where  

𝑍 = ∑𝑒−𝐸(𝑘,ℎ)

𝑘

. 

For the sake of simplicity in notation in later equations, this 

can instead be written as 

𝑝(𝑣) =
𝑒−ℱ(𝑣)

𝑍
 

where 

ℱ(𝑣) = −𝑙𝑜𝑔∑𝑒−𝐸(𝑥,ℎ)

ℎ

. 

ℱ(𝑣) will be referred to as the free energy function.  

C. Restricted Boltzmann Machines 

As stated before, the energy-based models of interest are 

restricted Boltzmann machines. In Figure 4, we see that RBMs 

have bias vectors 𝑏 and 𝑐, which are related to the visible and 

hidden layers, respectively, as well as a weight matrix 𝑊, 

which relates the hidden vector to the visible vector. Assuming 

the RBM is using binary units, which will be used throughout 

this paper, the transfer function at the nodes will be sigmoidal. 

This means that the visible vector and hidden vector are 

calculated from one another with 𝑣 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑏 +𝑊′ℎ) and 



ℎ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐 +𝑊𝑣) where the sigmoid function is defined 

as 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑡) =
1

1+𝑒−𝑡
. 

Of note here, the visible nodes are not dependent on one 

another nor are the hidden nodes. This makes it simple to 

calculate the probability of any ℎ for any given 𝑣 and vise-

versa. These probabilities are given as: 

𝑝(ℎ|𝑣) = ∏𝑝(ℎ𝑖|𝑣)

𝑖

 

and 

𝑝(𝑣|ℎ) =∏𝑝(𝑣𝑗|ℎ)

𝑗

. 

Given this information, the energy function of the RBM is 

defined as  

𝐸(𝑣, ℎ) = −𝑏′𝑣 − 𝑐′ℎ − ℎ′𝑊𝑣. 
From this the free energy function, can be derived and is 

defined as  

ℱ(𝑣) = −𝑏′𝑣 −∑𝑙𝑜𝑔

𝑖

(1 + 𝑒𝑐𝑖+𝑊𝑖𝑣). 

More information on RBMs and how to train them can be 

found in [6] and [7]. 

III. DEEP LEARNING 

As can be seen in figures 3 and 4, a trained RBM closely 

resembles a single layer of an artificial neural network. This 

allows us to stack RBMs to form a neural network. We train an 

RBM, which we’ll call RBM1, based on our input data. Then 

we take all the values at the hidden layer of RBM1 and use 

them as the inputs to train RBM2. Then the outputs of RBM2 

can be used as inputs to RBM3, and so on. This process is 

shown in Figure 5. This training is unsupervised, meaning that 

no targets outputs are given to the model. It will have 

information about the inputs and how they are related to one 

another, but they will not be able to solve any real problems.    

The next step in training a deep neural network, often called 

“fine tuning”, involves using gradient descent to train the 

neural network to solve a particular problem. Our problem is 

short-term load forecasting, so actual natural gas load values 

are used as target outputs and a set of features such as 

temperature, wind speed, day of the week, and previous loads 

are used as the inputs. After the supervised training step, the 

DNN function similarly to a large ANN. 

IV. METHOD 

In this section, some of the details of the proposed model, 

such as the architecture of the model and the inputs, are 

discussed.  

A. Architecture of the DNN 

Between varying the number of layers of the deep neural 

network and varying the number of neurons in each of those 

layers, the design space of a neural network is practically 

infinite. This is because the size of a neural network is limited 

only by computational power. The architecture used for both 

the ANN and DNN in this paper has four hidden layers with 

60, 60, 60, and 12 neurons respectively.    

B. Inputs to the DNN 

The inputs to the model include temperature (𝑇) and wind 

speed (𝑤𝑠) as well as industry standards like heating degree 

day: 

𝐻𝐷𝐷 = max⁡(0, 𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑇), 

And effective degree day: 

𝐸𝐷𝐷 = HDD
100+𝑤𝑠

100
. 

Multiples of each of these are created using different 

reference temperatures. Time based variables such as day of the 

week (𝑑𝑜𝑤) and day of the year (𝑑𝑜𝑦) are also used as well as 

more complicated time related variables such as: 

input = cos⁡(
2𝜋𝑑𝑜𝑤

7
), 

and 

input = HDD ∗ sin⁡(
2𝜋𝑑𝑜𝑦

365
). 

Another important set of inputs are loads, temperatures, and 

HDDs from previous days. These “lagged” terms are used 

because in gas systems prior day temperatures and loads can 

have a large effect. 

V. RESULTS 

This section discusses the performance of the DNN on the 

short-term load forecasting problems.  

Figure 5: Graphical representation of how RBMs are trained 

and stacked to function as a neural network. 



A. Metrics 

We will use several metrics to evaluate the performance of 

the models. First, the models will be evaluated using root mean 

square error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ [𝑆̂(𝑛) − 𝑆(𝑛)]

2𝑁
𝑛=1 , 

and mean absolute percent error (MAPE): 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑆̂(𝑛)−𝑆(𝑛)|

𝑆(𝑛)

𝑁
𝑛=1 . 

These metrics were chosen because of the value they provide 

together. RMSE is a powerful metric for short term natural gas 

load forecasting, because it naturally places more value on days 

with higher load, which are more important to natural gas 

utilities. Unfortunately, RMSE is dependent on the magnitude 

of the system and cannot be used to compare the performance 

of the technique between different systems. MAPE, on the 

other hand, is not magnitude dependent and can be used to 

compare performance between models of different systems. 

Conversely, MAPE naturally places higher value on days with 

lower load, which are less important to natural gas utilities. 

These two metrics together give a fuller picture of the 

performance of the model than either could alone.  

Another important criteria when evaluating a short term 

natural gas demand forecasting model is its performance on 

high demand and traditionally hard to forecast days. The 

highest demand days for natural gas are the coldest days when 

the heating load is the greatest. Prices are higher when the 

weather is colder so it’s more important that a forecast be 

correct on these days. Other important days for forecasting 

natural gas are days much colder or warmer than the previous 

day, the first warm days after a heating season, and the first 

cold days leading into a heating season. A forecasting model 

that performs well on these days can help a local distribution 

company avoid penalties and having to buy gas on the spot 

market. As such, all the models will be evaluated on these day 

types individually as well as on all days.  

B. The data set 

The data set used in this paper come from 176 natural gas 

operation areas around the United States. These operational 

areas come from many different geographical regions including 

the Southwest, the Midwest, West Coast, Northeast, and 

Southeast and thus represent a variety of climates. The data sets 

also include a variety of urban, suburban, and rural areas. This 

diverse data set allows for more broad conclusions to be made 

about the performance of the models. 

C. Comparing DNNs to ANNs and LR models 

In this section, the DNN is compared to other common 

forecasters: the feedforward ANN using a Levenberg-

Marquardt training algorithm and the LR model. Both the 

ANN and DNN outperform the LR model on most of the 176 

areas. This can be seen in Figure 6, which shows the 

histogram of the differences in MAPE between the LR model 

and DNN. In this figure, positive values reflect operating areas 

where the DNN is better than the LR model where negative 

values reflect the couple of areas where the LR model is 

better. This graph shows that the DNN outperforms the LR 

model on most of the operational areas. We performed a right-

tailed t-test and the p-value was found to be 4.64x10
-35

, which 

supports these findings. 

Likewise, the DNN outperforms the ANN on about half of 

the areas using MAPE and RMSE. Shown in Figure 6 are 

histograms of the difference between the ANN and DNN in 

MAPE. Although it appears that the center of the distribution is 

approximately zero, the right-tailed t-test shows that the mean 

of the distribution is greater than zero with a p-value of 

1.08x10
-4

. This means that in general, the DNN outperforms 

the ANN. 

Figure 6: On the left is the Histogram of the differences in MAPEs between DNN and the LR models. Visually, we can see that 

DNN generally outperforms the LR model. This is reflected in the p-value from the right-tailed t-test. On the right is the 

Histogram of the differences in MAPEs between the DNN and ANN models. We can see that the DNN and ANN models perform 

similarly with some bias towards the DNN. This is reflected in a larger p-value from the right-tailed t-test. 



We also want to compare the performance of the two 

models on hard to forecast days. Figure 7 shows that the DNN 

outperforms the ANN and LR model on all days and performs 

better on the days with the highest flow for an area. However, 

the DNN does not perform better on some of the other types of 

days. This tells us that despite the DNN being an effective 

forecaster, there are still improvements to be made in future 

work.  

VI. CONCLUSION 

Deep neural networks are a powerful tool for solving many 

machine learning problems such as speech processing and 

image classification. We find that, in general, the DNN 

outperforms other common forecasters given similar inputs. 

This shows that they are a viable tool to be used for time series 

forecasting; short-term natural gas forecasting in particular. 

This work is continued in [8] and [9].  
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Figure 7: Shows the performance of the median operational area when comparing DNNs to ANNs on several hard to forecast 

days. This includes the 5% coldest days, days with the 5% greatest drop in temperature between yesterday and today, days with 

the 5% greatest increase in temperature between yesterday and today, and the first heating and first non-heating days of the year. 

RMSE values are scaled to protect the anonymity of the operational area. 


