Journal of Network and Computer Applications 141 (2019) 59-72

Contents lists available at ScienceDirect .
NETWORK &

COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

B

SEVIER

journal homepage: www.elsevier.com/locate/jnca

A light weight smartphone based human activity recognition system with )
high accuracy

updates ‘

Md Osman Gani ®*, Taskina Fayezeen®, Richard J. Povinelli ¢, Roger O. Smith 9,
Muhammad Arif¢, Ahmed J. Kattan ¢, Sheikh Igbal Ahamed '

2 Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA

Y IT Services, Miami University, Oxford, OH, USA

¢ Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI, USA

d University of Wisconsin-Milwaukee, Milwaukee, WI, USA

¢ Department of Computer Science, Umm Al-Qura University, Makkah, Saudi Arabia

f Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI, USA

ARTICLE INFO ABSTRACT

Keywords:

Human activity recognition
Reconstructed phase space
Time-delay embedding
Gaussian mixture models

With the pervasive use of smartphones, which contain numerous sensors, data for modeling human activity
is readily available. Human activity recognition is an important area of research because it can be used in
context-aware applications. It has significant influence in many other research areas and applications includ-
ing healthcare, assisted living, personal fitness, and entertainment. There has been a widespread use of
machine learning techniques in wearable and smartphone based human activity recognition. Despite being

Smartphone : Hh ! !
Sensor an active area of research for more than a decade, most of the existing approaches require extensive com-
Accelerometer putation to extract feature, train model, and recognize activities. This study presents a computationally effi-

cient smartphone based human activity recognizer, based on dynamical systems and chaos theory. A recon-
structed phase space is formed from the accelerometer sensor data using time-delay embedding. A single
accelerometer axis is used to reduce memory and computational complexity. A Gaussian mixture model is
learned on the reconstructed phase space. A maximum likelihood classifier uses the Gaussian mixture model
to classify ten different human activities and a baseline. One public and one collected dataset were used
to validate the proposed approach. Data was collected from ten subjects. The public dataset contains data
from 30 subjects. Out-of-sample experimental results show that the proposed approach is able to recognize
human activities from smartphones’ one-axis raw accelerometer sensor data. The proposed approach achieved
100% accuracy for individual models across all activities and datasets. The proposed research requires 3
to 7 times less amount of data than the existing approaches to classify activities. It also requires 3 to 4
times less amount of time to build reconstructed phase space compare to time and frequency domain fea-
tures. A comparative evaluation is also presented to compare proposed approach with the state-of-the-art
works.

1. Introduction

With the proliferation of context-aware systems and applications,
the human activity plays an important role along with the location
(Gheid et al., 2017). Recognition of human activities has importance
in many research areas such as pervasive computing (Satyanarayanan,
2001), machine learning (Su et al., 2014), artificial intelligence, human
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computer interaction, healthcare (Torres-Huitzil and Alvarez-Landero,
2015), rehabilitation engineering (A et al., Fayezeen), assistive tech-
nology (Albert et al., 2017), social networking, and the social sciences
(Lara and Labrador, 2013), (Osmani et al., 2008). Substantial research
has been conducted to recognize human activities. One of the most sig-
nificant and challenging tasks for pervasive computing systems is to
offer correct and appropriate intelligence about peoples activities and
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Table 1
Activities and smartphone placement.

Activity Phone Placement

Pocket and Waist
Pocket and Waist
Pocket and Waist

Walking
Walking Downstairs
Walking Upstairs

Running Pocket and Waist
Standing Pocket and Waist
Sitting Pocket and Waist
Laying Waist

Elevator Down Pocket

Elevator Up Pocket

Driving Pocket and Cup-holder
Baseline Table

behaviors (Lara and Labrador, 2013). Activity recognition systems are
being used in large number in monitoring elderly people with demen-
tia and people in rehabilitation (lvarez Concepcin et al., 2014). The
functional status of a person is an important parameter in the area
of assisted living and elderly care (Gani et al., 2017). This status is
described mainly activities of daily living (ADL) (Hong et al., 2010).
Also, it can be used to offer context-aware services to smartphone users
like suitable application selections and content recommendation (Lee
and Cho, 2011).

We used smartphones to capture these activities. They offer a range
of useful sensors such as accelerometers, gyroscopes, orientation sen-
sors, magnetometers, barometers, GPS, Wi-Fi, fingerprint, and near field
communication (NFC) (Yi et al., 2012). Smartphones also have substan-
tial computational power. Hence, use of the smartphone in the human
activity recognition system eliminates the cost of additional devices and
sensors (Lane et al., 2010). Most smartphones have built in tri-axial
accelerometer sensors, which measure acceleration along the x, y and
z-axes. The key challenge is to use the accelerometer sensors to model
full body human motor activities. This paper presents a smartphone
based human activity recognition system using Gaussian mixture mod-
els (GMM) of reconstructed phase spaces (RPS). Our approach uses raw
accelerometer sensor data from one single axis to recognize 11 different
activities including walking, walking upstairs and downstairs, running,
standing, and sitting. We investigated the use of dynamical system and
chaos theory to capture and then recognize the underlying dynamics of
different human activities.

We evaluated our proposed system using two datasets (a collected
dataset and a publicly available dataset) of acceleration measurements
of 11 activities (Table 1). We collected accelerometer data for 10 dif-
ferent activities. The activities were performed by ten different partic-
ipants carrying a smartphone in their pocket. We also used a dataset
from the UCI Machine Learning repository (Anguita et al., 2013). It
has accelerometer and gyroscope data for 6 activities performed by
30 participants. Both datasets were divided into training and testing
sets. The training dataset was only used to train the system, while
test datasets were used to test the accuracy. The proposed approach
achieved 100% accuracy for individual models across all activities and
datasets. It required 3 to 7 times less amount of data for the recog-
nition than the existing approaches, such as Antos 2013 (Antos et al.,
2014), Anguita et al., 2013 (Anguita et al., 2013), and Haq 2018 (ul Haq
et al., 2018). Also, the time required to build the reconstructed phase
space from the raw accelerometer sensor data was 3—4 times faster com-
pared to extracting time and frequency domain features (Panwar et al.,
2017).

We implemented our system in two different case studies. One case
study took place in a rehabilitation clinic for remote monitoring, where
the patients daily activities were reported to a cloud server from their
smartphone. Physicians could access and assess patients activities based
on the assigned task and daily routine. The second case study took place
in the Hajj, the fifth pillar of Islam an annual pilgrimage of Muslims to
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Makkah, Saudi Arabia (Clingingsmith et al., 2009). The purpose was
to track pilgrims’ location based on their activities when they get lost
(Gani et al., 2016). We present the comparative analysis of the proposed
approach with the state-of-the-art works.

The summary of the contributions of this paper is:

e Use of time-delay embedding or reconstructed phase space to cap-
ture underlying dynamics of human body motion for different activ-
ities from smartphone accelerometer.

e Statistical learner that learns the underlying dynamics of human
activities and maximum likelihood classifier to recognize those
activities.

e An alternative approach to widely used machine learning techniques
to recognize human activities from kinematics sensors (specifically
accelerometer).

e Activity recognition system with a very good accuracy across 11
activities.

e Computationally inexpensive approach to activity recognition by
using only one accelerometer axis.

e Evaluation of the approach using collected dataset and publicly
available human activity dataset.

e Deployment of the system in two different case studies: 1) Location
tracking of pilgrims using their activity information, and 2) Daily
activity monitoring of patients in a rehabilitation clinic.

e Published collected human activity dataset in the public domain to
enhance research in this area (http://ubicomp.mscs.mu.edu).

This research article is organized as follows. The related research
is discussed in section 2. The background is discussed in section 3.
The data collection process is presented in section 4. The methodol-
ogy is discussed in section 5. The details of the experiments including
training, testing, and results are discussed in section 6. The contribu-
tions are discussed in section 7. Finally the conclusions are presented in
section 8.

2. Related research

There is extensive research focused on automated machine recog-
nition of human activity (Liao et al., 2005), (Aggarwal and Cai,
1999), (Yan et al., 2012), (Yang, 2009), (Tapia et al., 2004), (Khan
et al., 2015), (Wang et al., 2015). Use of computer vision has been
one approach (Aggarwal and Cai, 1999). Computer vision approaches
implement automatic human activity recognition from a sequence of
images or videos where activities are performed by one or more per-
sons (Saad Ali, 2007). Other research has used environmental sensors
like a sound sensor on a floor, a light sensor in a room, radio frequency
identification (RFID) as a door tag or wearable kinematic sensors like
the accelerometer, and the gyroscope by placing them on different parts
of the body (Maurer et al., 2006), (Tapia et al., 2004), (Bao and Intille,
2004), (Ravi et al., 2005) (Siirtola et al., 2009). The wearable device
based systems are very expensive. These systems lack applicability on
mobile devices due to high computational cost and excessive energy
consumption. One of the disadvantages of the wearable activity recogni-
tion system is that the users face discomfort using the wearable devices.
Also there is a risk of losing and forgetting the devices (lvarez Concepcin
et al., 2014). Therefore, there is a need for special attention to energy
consumption and computational cost when designing systems to rec-
ognize human activities using mobile devices (Ivarez Concepcin et al.,
2014).

An alternative approach leverages the increasingly ubiquitous
smartphone. Compared to computer vision or wearable sensor
approaches, smartphones offer many advantages. Smartphones do not
require additional infrastructure, are unobtrusive, and have good
and rapidly increasing computational power (Dernbach et al., 2012),
(Brezmes et al., 2009), (Hache et al., 2010), (Zhang et al., 2010), (ul
Hagq et al., 2018). Most smartphone based approaches have focused on
recognizing simple human activities such as walking, running, stand-
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Fig. 1. Overview of the smartphone based human activity recognition system.

ing, walking up stairs, walking down stairs, sitting, and climbing. Some
research has also considered recognition of more complex functional
activities like brushing teeth, cleaning dishes, and vacuuming a floor
(Lara and Labrador, 2013). The overview of smartphone based human
activity recognition systems is shown in Fig. 1 (Su et al., 2014). Dif-
ferent activity signals are collected from the smartphone sensors. The
signals are then processed to train a human activity recognition system
and tested to recognize different activities. The approaches vary based
on data preprocessing, number and type of sensors, mathematical mod-
els, and implementations. These systems output the classified human
activities.

There has been a widespread use of machine learning techniques
in wearable and smartphone based human activity recognition. One
of the most common approaches is to extract statistical and structural
features (time-domain features: mean, standard deviation, maximum,
minimum, correlation (Su et al., 2014), (lvarez de la Concepcin et
al., 2014), (Kwapisz et al., 2010), frequency-domain features: Fourier
transform (Bao and Intille, 2004), Discrete Cosine transform (Altun and
Barshan, 2010), and principal component analysis (PCA) (He and Jin,
2009)) from raw sensor data and then to use classification algorithms
like logistic regression (Kwapisz et al., 2010), multilayer perceptron
(Bayat et al., 2014), support vector machine (SVM) (He and Jin, 2009),
(Jordan Frank et al., 2010), (ul Haq et al., 2018), decision tree (Jatoba
et al., 2008), k-nearest neighbors (Maurer et al., 2006), naive Bayes
(Tapia et al., 2007), hidden markov model (HMM) (Zhu and Sheng,
2009) (Su et al., 2014), (Lara and Labrador, 2013) (Antos et al., 2014)
(Ravi et al., 2005), and convolutional neural network (Panwar et al.,
2017). Gaussian mixture models have also been used to model human
activities (Srivastava, 2012), (Piyathilaka and Kodagoda, 2013). Most
of these approaches require extensive computation to extract feature,
train model, and recognize activity class. They increase the power con-
sumption on mobile and wearable devices, which limits the long-term
activity recognition (Yan et al., 2012). The memory and computational
complexity of the activity recognition system depends on the number of
sensors, sampling frequency, number of extracted features, size of the
activity cycle, and mathematical model (Lara and Labrador, 2013). Sun
and Hagq discussed different aspects of the activity recognition system
varying mobile phone positions and orientations (Sun et al., 2010), (ul
Hagq et al., 2018). Yan discussed the effect of the sampling frequency
and classification features on energy consumption (Yan et al., 2012).
We have discussed the number of sensors, sampling frequency, and size
of the activity cycle used in different studies in the following subsec-
tion.

The activity cycle is a set of time series observations (sensor data)
that contains a complete execution of an activity pattern. The system
won’t be able to determine the performed activity if the time series
observation does not contain a complete activity cycle (lvarez Con-
cepcin et al., 2014). There are different strategies to select this win-
dow or segment so that it contains necessary time series observation
(Bao and Intille, 2004) (Dernbach et al., 2012). Kwapisz used a 10 s
window (comprised of 200 samples) from cell phone accelerometer at
a sampling frequency of 20 Hz (Kwapisz et al., 2010). Authors argued
that it was an adequate amount of time to capture several repetitions
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of the performed activities. They performed experiments with 10 and
20 s windows where 10 s segments produced better outcome. Reiss
used a 5 s window at a sampling frequency of 100 Hz from three body
mounted (mounted to the dominant arm, chest, and foot) sensors (Reiss
et al., 2011). Lee used a smartphone accelerometer signal window of
5s (60 samples) (Lee and Cho, 2011). There are some works where
the activity window includes some percentage overlap of the immedi-
ate neighboring activity window (Bao and Intille, 2004) (Hong et al.,
2010) (Inoue et al., 2015). Bao used a window of 512 samples (6.7 s
of data) with 50% overlap to extract time and frequency domain fea-
tures from 5 body mounted bi-axial accelerometer sensors (Bao and
Intille, 2004). Ravi used a single tri-axial accelerometer (worn near
the pelvic region) to form an activity window of 256 samples (5.12 s
of data) with 50% overlap at a sampling frequency of 50 Hz (Ravi
et al., 2005). Hong also extracted features from a 256 sample win-
dow overlapped with 128 samples (50% overlap) (Hong et al., 2010).
Inoue recognized real nursing activities for a whole day by extracting
features from a window of 5 s, overlapping every 2.5 s (Inoue et al.,
2015).

Most of the existing research has focused on generalized activ-
ity recognition model to recognize unseen activities (Kwapisz et al.,
2010) (Brezmes et al., 2009). Lockharty and Weiss discussed the impact
of personalized model and generalized model in smartphone-based
activity recognition (Weiss and Lockhart, 2012). They also discussed
the benefits of the personalized or individualized activity recognition
models (Lockharty and Weiss, 2014). They showed that the person-
alized models performed better than generalized models. The gen-
eralized models were unable to classify activities with good accu-
racy. They experimented with six activities (walk, jog, stair, sit, stand,
and lie) using the widely used classification algorithms (decision tree,
random forest, instance-based learning, neural networks, naive Bayes
and logistic regression). The participant carried the android smart-
phone in their pocket. The 3 axes accelerometer sensor data were
used to extract 43 statistical features. The personal model showed
an average accuracy of 97% compared to the average accuracy of
the hybrid model of 88%, whereas their combination provided even
lower average accuracy of 70%. They showed that in order to improve
the accuracy of the generalized models, it was better to get data
from more users than to obtain more data from the same set of
users.

There has been some work using dynamical system theory and chaos
theory along with machine learning techniques (Saad Ali, 2007). Frank
et al. used a wearable device (Intel mobile sensing platform (MSP)
(Choudhury et al., 2008)) which contained a tri-axial accelerometer and
a biometric pressure sensor (Jordan Frank et al., 2010). The device was
clipped onto a belt at the side of the hip. They used three axes acceler-
ation to form a single measure of magnitude. The series of acceleration
magnitude were used to reconstruct phase space. They used principle
component analysis (PCA) to extract features (9 largest eigenvalues)
from the phase space. These 9 features along with gradient of biometric
pressure were used to train and test a Support vector Machine (SVM)
for 5 activities performed by 6 participants. They achieved an accu-
racy of 85%. Kawsar developed an activity recognition system using
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accelerometer and gyroscope sensor data from the smartphone, and
pressure sensor data from the shoe (Kawsar et al., 2015). They used
decision tree, Shapelet based classification (Ye and Keogh, 2009) and
time-delay embedding based classification. The experiments were per-
formed using only 4 activities (running, walking, sitting, and stand-
ing). They achieved 88.64% classification accuracy using the Shapelet
based classification with pressure sensor data from the left shoe, which
took 3.3 s. This is a very expensive system with respect to time. They
achieved 100% classification accuracy using the time-delay embedding
with one pressure sensor data from the left shoe. They did not men-
tion the number of subjects who participated in the study, which would
have significant impact on the classification accuracy. Also, they did not
perform experiments with other widely tested activities, like walking
upstairs and walking downstairs. Most of the existing approaches have
lower accuracy in differentiating between these two activities and the
walking activity (Huynh) (Bao and Intille, 2004) (Lara and Labrador,
2013).

In our approach, we used only one-axis acceleration from smart-
phone to capture underlying dynamics of the activities by reconstruct-
ing the phase space. We learned Gaussian mixture models from under-
lying dynamics to classify 11 activities performed by 40 participants
placing the smartphone in two different body positions.

3. Background

A dynamical system is a model that describes the evolution of a
system over time. It describes the temporal evolution of a system to
capture the system’s dynamics. A phase space represents all possible
states of the system that evolve over time. The dynamics is the map
that describes how the system evolves. Theory of dynamical systems
attempts to understand and describe the temporal evolution of a system,
which is defined in a phase space.

3.1. Reconstructed phase space

We use the representational capability of RPS to capture the under-
lying dynamics of the system from time series observations (accelerom-
eter sensor data). The RPS is topologically equivalent to the original
system (Takens, 1981). Given a time series x,

x=x, n=1...N 1)

where n is the index and N is the total number of observations. We
observe a sequence of scalar measurements in a time series that depends
on the state of the system. We convert these observations into state
vectors. These vectors are formed according to Takens delay embedding
theorem,

(2)

Xn = [Xn, X r5 - ’xn—(d—l)r]’

where 7 is the time delay and d is the embedding dimension (Takens,
1981), (Whitney, 1936), (Sauer et al., 1991). This time-delay embed-
ding reconstructs the state and dynamics of the unknown system from
the observed measurements. This time delayed embedding of the time
series is called the reconstructed phase space (Fang and Chan, 2013).
The sine curve and the corresponding phase plot for different time lags
are shown in Fig. 2. Here the sine curve represents the time series obser-
vation for the value of x from 0 to 4z. This observation is then used to
describe the evolution of the system (sine series) over time using phase
space. The phase spaces are reconstructed using dimension d = 3 and
time lag = {3,5,7,9}. The respective phase spaces are shown in dif-
ferent colors.

The reconstructed space is topologically equivalent to the original
system. It preserves the dynamics of the underlying dynamical system
if certain assumptions are made. The embedding dimension d needs to
be greater than twice the box counting dimension of the original system
(Povinelli et al., 2004). For most of the system where d is unknown, d
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1 1 1 1 A

Sine(x)

1 1 1 1 1 1 A
20 40 60 80 100 120 140
Timestamp (x =0 to 47)

(a) Sine curve for value of = from 0 to =

1
0

X

(b) Phase space of the sine curve for the dimension, d = 3
and time lag, 7 = 3 (blue), 5 (orange), 7 (yellow), and 9
(purple)

Fig. 2. Sine curve and its phase plot.

is estimated using the false nearest-neighbor technique. The dimension
of the RPS can be reduced using appropriate selection of the time lag.
Though embedding theorems say nothing about the time lag, one of the
data driven approaches to find a reasonable estimate of the time lag
is to use the first minimum of the automutual information (Kantz and
Schreiber, 2004).

3.2. Gaussian Mixture Models

We use Gaussian Mixture Models (GMM) to learn the underlying
distribution of the dynamics represented by the RPS. We represent each
activity class model using a GMM. The GMM is a parametric probability
density function, which is a weighted sum of M Gaussian probability
density function defined as (Reynolds, 2009),

M M
PO A = Y wpi) = Y wiN (1, i, ;) ®3)
i=1 i=1
where M is the number of mixtures, N'(x; y;, &;) is a normal distribution
with mean y; and covariance matrix Z;, and w; is the mixture weight
satisfy the constraint that Zi\i 1 W; = 1. The parameters of a complete
parameterized Gaussian mixture is denoted by 4,

A=A{w,u;, %} i=1,....M 4

The parameters of the GMM are estimated using the Expectation-
Maximization (EM) algorithm to maximize the likelihood of the data
(Moon, 1996). The EM algorithm begins with an initial model A and
then estimate a new model 1 at each iteration, where pX| 2> pX|A)
for a sequence of training vectors, X = X;,X,,...,Xy. Parameters are
estimated using the following formulas:
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Fig. 3. Acceleration along three axes for walking activity.
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3.3. Maximum likelihood classifier

A Bayesian maximum likelihood classifier computes likelihoods on
each point x;, from each of the learned model, a; using the following
likelihood function (Moon, 1996):

T
p(X | @) = [ pxic | @) ©

k=1
Once all the likelihoods are computed then the maximum likelihood
class, @ (i.e. classification) is found using the following equation (7).

)

a=arg max p(X | @;)
i

4. Experimental data acquisition

Wearable kinematic sensors, such as accelerometer and gyroscope,
have been widely used in activity recognition systems. Smartphone
platforms offer application frameworks and libraries to access the sen-
sor data, such that it is easy to access and collect motion data from
smartphones. Thus, smartphones provide a powerful mobile system
with integrated sensors, inexpensive software development, and with-
out the need for additional hardware. Practically, users are more com-
fortable carrying a smartphone than wearing multiple sensors on their
body. We have used two different datasets (one through data collection
and another publicly available human activity dataset) to perform the
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experiment. Both datasets contain raw data from built-in accelerometer
sensor of the smartphone. The data were collected by placing the smart-
phone in four different positions (pant pocket, waist, table, and beside
cup-holder (inside car)). The activities performed and phone placement
are shown in Table 1.

4.1. Data collection

We collected accelerometer sensor data for different activities using
UbiSen (Ubicomp Lab Sensor Application for Android). We used a
Google Nexus 5 smartphone running Android OS 5.0. The participants
placed the phone in their front pant pocket. They performed eight sim-
ple activities: walking, walking upstairs, walking downstairs, running,
sitting, standing, elevator up and elevator down. We also collected sen-
sor data during driving and when the phone was placed at a fixed place,
like a table. For the driving activity, the phone was placed inside the
pocket and also in the vehicle cup-holder. The accelerometer sensor
data along the three axes for the walking activity is shown in Fig. 3.
Here three different axes have three different but repetitive patterns.
The accelerometer sensor data along the y-axis for all the activities are
shown in Fig. 4.

There were 10 participants (age ranges between 20-35, both male
and female) in the data collection event. Each participant performed 10
activities in an uncontrolled environment. Each activity was performed
for a different time durations. Walking, running, standing, sitting, and
phone placed at table (baseline) were performed for 2-3 min. Walk-
ing upstairs, walking downstairs, elevator up, and elevator down were
performed for 1-2 min. Driving data were collected for approximately
10-15 min. In total we have 3 h 20 min of sensor data for 10 different
activities performed by the participants.

4.2. Public dataset

We also used a dataset Human Activity Recognition Using Smartphone
Data Set, from the UCI Machine Learning Repository. The data were
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Fig. 4. Accelerometer sensor data along the Y-axis for 10 different activities.

collected from a group of 30 participants aged 19-48 years. Each par-
ticipant wore a smartphone (Samsung Galaxy S II) on the waist and
performed six activities: 1) walking, 2) walking upstairs, 3) walking
downstairs, 4) sitting, 5) standing, and 6) laying down. The accelerom-
eter and gyroscope sensor data were captured at a rate of 50 Hz. The
noise filters were applied to preprocess the raw sensor data. The Butter-
worth low-pass filter was used to separate gravity from the acceleration
signal. The dataset was partitioned randomly into training (70%) and
testing (30%) set.

5. Experimental setup

We briefly discuss the process of training and testing the human
activities in the following subsections. The overview of both phases is
shown in Fig. 5.

5.1. Training

The first step is to build RPS from accelerometer data for each
activity using time lag and embedding dimension. We estimate the
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time lag and embedding dimension using the techniques discussed in
section III. The time lag is estimated for each activity signal using
the first minimum of the automutual information. Once all the time
lags are estimated for each activity, then a time lag is selected for the
RPS using the mode of the histogram of all estimated time lags. The
global false nearest-technique is applied on each activity signal to cal-
culate embedding dimension for RPS. Again, once embedding dimen-
sions for all the signals are calculated, then an embedding dimen-
sion is selected for the RPS as the mean of all calculated dimen-
sions. The mode and mean are taken so that most of the activity sig-
nals are able to unfold completely in the RPS. Once time lag and
embedding dimension are selected, then we build RPS for each sig-
nal.

Once the RPS is built, we learn a GMM probability distribution
for each activity signal class. Each GMM represents the corresponding
model for the activity class. Thus, we have an array of models after the
completion of the training phase. The size of this array is equal to the
number of activity class.
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Fig. 6. Time lag estimation for walking activity.

5.2. Testing

To test activity signal, we create RPSs from the raw accelerometer
sensor data using the same time lag and embedding dimensions (esti-
mated in the training phase). Then we test RPS against all the GMMs
(created in the training phase). It gives us likelihood probability for
each activity model. Bayesian maximum likelihood classifier is used to
classify test signal as a classified or recognized activity. This is done
using the activity model class with the highest likelihood. The system
outputs test signal as one of the classified activities.

We evaluate our system with quantitative assessment. The k-fold
cross validation helps us to evaluate accuracy where k is the number
of data partitions (Arlot and Celisse, 2010). It helps us to generalize
the statistical analysis and overcome problems like over fitting of the
algorithm on the training set. We also varied the system’s parameters
to analyze its robustness.

6. Experimental evaluation

We evaluated our approach using both the collected and publicly
available datasets. We used individualized model to experiment with
the collected dataset and generalized model for the public dataset. We
used Matlab and Weka machine learning toolbox to perform the experi-
ment. We tested our approach using both dataset and time-domain fea-
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tures with classification algorithms using the first dataset. We discuss
the experimental details and results in the following subsections.

6.1. Experiment with our approach

We analyzed accelerometer sensor data (3 axes) for all the activi-
ties. We observed acceleration along different axes. We saw different
patterns along these axes for different activities. Even when we looked
only at the acceleration along the y-axis (as shown in Fig. 4), we also
saw a uniquely distinguishable pattern for each of the different activi-
ties. The challenge was to build the model to capture the dynamics of
the activities from this acceleration along the y-axis and differentiate
one from another. We discuss training and testing phases in the follow-
ing subsections in detail.

We used the raw sensor data along the y-axis to build reconstructed
phase space with appropriate time lag and embedding dimension. We
partitioned data into different activity cycles (number of partitions,
k = 40) each containing 300-600 samples. During the data collection
process we recorded videos of the footsteps. We selected the sam-
ple size by comparing activity (walking, walking upstairs, walking
downstairs, and running) cycles with synchronized video observations
for each of the activities and the corresponding sensor values at the
same time. We selected the sample size to ensure that it contained
more samples than the largest activity cycle. We also analyzed the
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Fig. 7. Reconstructed phase spaces for time lag, 7 = 5, and embedding dimension, d = 6.

effect of sample size on system’s performance. To build the RPS, we
took one subject from each of the different activity classes. Then we
computed automutual information for different time lags. The first
minimum of the automutual information is used to estimate the time
lag for each activity class. The graph in Fig. 6a shows the automutual
information of “walking upstairs” activity for different time lags. Here
the first minimum of the automutual information is found for time lag
value 5.

We computed the time lag for all the activity classes. The mode
of these time lags was used to estimate time lag for RPS, as shown
in Fig. 6b for all the activities. We found time lag = 5 in this pro-
cess. Then we used this estimated time lag value to estimate embed-
ding dimension. We computed percentage of false nearest-neighbors to
determine the embedding dimension for each activity class. We took
the mean of all calculated embedding dimensions to select embedding
dimension for the RPS. We estimated the embedding dimension to be
d = 6. We used these estimated values of time lag and embedding
dimension to build RPS for each activity class. The RPSs for walk-
ing, walking downstairs, walking upstairs, running, sitting, and phone
placed at table build with time lag, 7 = 5 and embedding dimension,
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d = 6 are shown in Fig. 7. The difference in underlying dynamics
between the activities is represented by these RPSs. We used RPSs for
each activity class to learn GMMs.

6.1.1. Testing

We evaluated all the subjects for each activity using each of the
activity models (GMMs). At first the RPSs were generated using the
same time lag and embedding dimension we used in the training phase.
These RPSs were then tested against each of the activity class models.
We estimated the likelihood of the RPSs against GMMs. We used m = 5
mixtures for GMM. We also changed the number of mixtures to see
its effect on the systems performance. For each single subject of data,
we computed all the likelihood probability (log probability) for each
activity class model. Then we used a maximum likelihood classifier to
identify the corresponding subject as one of the human activities. The
classifier takes all the likelihood probabilities and outputs the activity
class associated with the maximum probability. We used 10-fold cross
validations to validate accuracy of the system. We took nine partitions
at a time to train the system. The other one along with the training
partitions were used to test the performance.
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Table 2
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Confusion Matrix for the individualized model of collected dataset using proposed approach.

Activity Predicted Class
Walking Downstairs Upstairs Running Sitting Standing Elev. Down Elev. Up Baseline Driving

True Class Walking 400 0 0 0 0 0 0 0 0 0
Downstairs 0 400 0 0 0 0 0 0 0 0
Upstairs 0 0 400 0 0 0 0 0 0 0
Running 0 0 0 400 0 0 0 0 0 0
Sitting 0 0 0 0 400 0 0 0 0 0
Standing 0 0 0 0 0 400 0 0 0 0
Elev. Down 0 0 0 0 0 0 400 0 0 0
Elev. Up 0 0 0 0 0 0 0 400 0 0
Baseline 0 0 0 0 0 0 0 0 400 0
Driving 0 0 0 0 0 0 0 0 0 400

Table 3
: Classification algorithms. 100 ~
Family Classifiers §? 95 ~
]

Decision Tree Classification and Regression Trees 8 90 ~

Bayesian Bayesian Network, Naive Bayes 2 85 -

Artificial Neural Networks Multilayer Perceptron

Maximum Margin Classifier Support Vector Machine 600 - .

Instance based k-Nearest Neighbors 400 - W 3000

Rule based classifier Decision Table - ~ 2000

200 1000

Regression
Classifier Ensembles

Logistic Regression
Bagged Trees, Random Forest

6.2. Experiment with time-domain features and classification algorithms

We performed experiments with time-domain features and classi-
fication algorithms used by state-of-the-art human activity recognition
systems (Lee and Cho, 2014) (Derawi and Bours, 2013) (Dernbach et al.,
2012) (Siirtola et al., 2009). We used following time-domain features:
1) mean, 2) max, 3) min, 4) standard deviation, 5) variance, representing
mean, maximum, minimum standard deviation, and variance of activity
cycle respectively.

The features were extracted from each subject (as discussed in the
previous section) for all the activities. The feature vector was formed
using the features. We used the feature vector to train and test different
classification algorithms. We analyzed the performance of the classifi-
cation algorithms tabulated in Table 3.

6.3. Experiment with time and frequency domain features

We performed experiments with time and frequency domain fea-
tures used in Human Activity Recognition Using Smartphone Data Set
(Anguita et al., 2013) for each axis acceleration. We extracted 60
features for each axis and used Decision Tree, SVM, Weighted KNN,
Bagged Trees along with SVM with Gaussian Karnel (technique Anguita
(Anguita et al., 2013) used) to perform the experiment.

6.4. Results

We present quantitative evaluation of the system in this subsection.
The confusion matrix for all the activity classes are also presented. For
each row, the corresponding true activity class is the positive class and
the rest of the activity classes were considered as negative class. To
describe the performance, we obtained the following terms from the
confusion matrix: 1) True Positives (TP) is the number of positive activ-
ity classes that were classified as positive, 2) False Positives (FP) is the
number of negative activity classes that were classified as positive, 3)
True Negatives (TN) is the number of negative activity classes that were
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Training Size

Size of activity cycle

Fig. 8. Performance of the system with respect to number of sample in training
set and activity cycle.

classified as negative, and 4)False Negatives (FN) is the number of pos-
itive activity classes that were classified as negatives.

Then, we computed the performance for all the activity classes from
using these terms as follows:

TP+ TN

e (€)]
TP+ FP+ TN + FN

Accuracy =

6.4.1. Collected dataset

There were 10 participants, and for each of the activities we took
40 partitions into consideration; therefore, a total of 400 instances for
each class of activity. We used individual activity models for each of the
participants. We changed different parameters of the model to check for
robustness. The confusion matrix is shown in Table 2. All 400 instances
in each row were classified correctly. We also performed experiments
with the rest of the data (not included in the 40 partitions) and found
similar results.

We changed the size of training set from 1000 samples to 3000 sam-
ples and size of each activity cycle from 200 samples to 600 samples.
For each of the combinations we tested system’s accuracy. The perfor-
mance of the system for all the configurations is shown in Fig. 8. The
performance increased as we increased the size of the training set and
activity cycle. We observed that most of the activities had cycle length
around 260-270. The incorrect partitioning of the activity cycle did
not contain enough evidence for respective activity class. Hence the
system was unable to capture the underlying dynamics of the activity.
Thus increasing the size of activity cycle helped each cycle to contain
enough information about the activity class. The accuracy of the system
was consistent when the activity cycle contained enough information
and the model was trained with the underlying dynamics.

We also changed the number of mixtures for GMMs from m = 1 to
m = 7. We combined this change in number of mixtures with change
in size of each activity cycle discussed above. The performance of the
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Fig. 10. Precision and recall for each activity class (Public Dataset).

system for all the configurations is shown in Fig. 9. The performance
was stable with 100% accuracy for all the configuration having at least
activity cycle size of 300 and 5 mixtures. We observed that the system
was unable to classify activity cycle with number of mixtures less than
or equal to 3, even though activity cycle contained enough evidence
(size = 300 to size = 600). Therefore the number of mixtures was not
enough to maximize the likelihood of the RPS.

The performance of the classification algorithms using time-domain
features is shown in Fig. 11. The acronyms used in the figure are as
follows: a) Our: Our Approach, b) BT: Bagged Trees, c¢) LR: Logistic
Regression, d) RF: Random Forest, €) DTb: Decision Table, f) W-KNN:
Weighted K-Nearest Neighbor, g) SVM, h) Artificial Neural Network, i)
NB: Naive Bayes, j) BN: Bayesian Network, and k) DT: Decision Tree.
We tested 10 classification algorithms using 5 time-domain features
for each individual model. We achieved 90%-91% accuracy for Bayes
Network, Naive Bayes, Multilayer Perceptron, SVM, KNN, and Bagged
Trees. We achieved accuracy of above 83% for other classification algo-
rithms. In contrast to these approaches, our system achieved an accu-

Table 4
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Fig. 11. Algorithm Performances using 1-Axis Acceleration (Our Dataset).

racy of 100%. Our system is able to classify all the activities from y-
axis acceleration with 100% accuracy. We have shown the models are
able to capture the underlying dynamics when activity cycle contains
enough information about activity. The classification algorithms are not
very successful with above mentioned extracted time-domain features
from the same activity cycle. We present the precision and recall for
each activity class in Fig. 10 for the public dataset. We observed that
the highest precision and recall are for the sitting and laying activities
and lowest are for the walking and taking stairs.

6.4.2. Public dataset

We applied our approach on the public dataset. We used generalized
model of each activity for all the participants. The confusion matrix for
this experiment is shown in Table 4. The accuracy of the system for
the generalized model is 90%. For each row, the corresponding true
activity class is the positive class and the rest of the activity classes
were considered as negative class. We also compared our work with
Anguita (Anguita et al., 2013) using 60 time and frequency domain fea-
tures, and present the results in Fig. 12. Our approach achieves highest
accuracy (90%) compared to other approaches (Decision Tree (Bao and
Intille, 2004) (Ravi et al., 2005), Support Vector Machine (Derawi and
Bours, 2013) (Attal et al., 2015), K-Nearest Neighbors (Paul and George,
2015) (Sani et al., 2017), and Bagged Trees (AK et al., 2017)) and the
approach used in Anguita (Anguita et al., 2013).

7. Discussion

We presented a human activity recognition system for smartphones.
We leveraged the built-in accelerometer sensor to identify users’ current
activity. For the first dataset of 10 participants, out of 10 activities, we
achieved 100% accuracy for all the activities using our approach. We
used individualized models for each of the participants for. For the same
dataset, we extracted 5 time-domain features and applied 10 classifica-
tion algorithms. We achieved the largest accuracy of 91% using these
techniques.

We also compared (Fig. 11) our work with Anguita (Anguita et al.,
2013) using 60 time and frequency domain features. We present a com-

Confusion Matrix for the generalized model of public dataset using proposed approach.

Activity Predicted Class
Walking Downstairs Upstairs Standing Sitting Laying

True Class Walking 278 37 55 0 0 0
Downstairs 33 297 0 0 0 0
Upstairs 30 15 255 0 0 0
Standing 0 0 0 361 19 0
Sitting 0 0 0 5 402 0
Laying 0 0 0 6 0 409
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Fig. 12. Performance of algorithms using 1-axis acceleration (UCI Dataset)
(Anguita et al., 2013).

parative analysis of our work with state-of-the-art techniques in Table 5.
We compare activities, methodology, sensors, extracted features, num-
ber of subjects, and performance for each of the works. Compared to the
existing approaches we achieved a very good accuracy for personalized
model even with a less amount of data. This gives us the opportunity to
easily create a high accuracy personalized activity recognition model.
We also presented time required to build RPS (Povinelli et al., 2004)
and extract time and frequency domain features from the acceleration
signal (Anguita et al., 2013) of sample size 128 and 600 in Fig. 13. The
time required to extract features (7 features and 66 features respec-
tively) is 3—4 times higher than building RPS. Also, the time to recog-
nize activity class is fast, taking an approximate time of 0.0715 ms.

For the second dataset we applied our approach and used a gen-
eralized model. However, the system was able to classify 6 different
activities of 30 participants with an accuracy of 90%. We achieved 99%
accuracy for sitting and laying activity, and 95% for standing. The over-
all accuracy increases to 95% when we increased the number of samples
in the activity cycle. When we used individualized models, the system
was able to classify the activities with an accuracy of 100%. Hence,
our approach is able to recognize 11 different activities for 40 different
users varying the smartphone placement between the pocket and waist.
This is only using the observation from one single axis accelerometer
data for personalized models.

The walking, walking upstairs, and walking downstairs are classi-
fied with an accuracy of 75%, 90%, and 85% respectively. It looks like
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Fig. 13. Time required to extract features and build RPS.

the system is unable to fully capture dynamics for these three activi-
ties. If we look at the misclassified instances, we see that all the mis-
classified instances were classified between these three activities inter-
changeably. Also by observing RPSs for these activities we saw that they
had a similar dynamics. When we placed the smartphone on the waist,
these three activities showed similar dynamics based on the accelera-
tion along y-axis. We considered grouping these three activities as one
activity, named, “walk”, and then classifying it. We then found that the
system was able to classify the walk activity with 100% accuracy.

We think that the representational capabilities of time-delay embed-
ding (RPS) captures the underlying dynamics well from the time series
acceleration. The higher dimensional representations also helps GMM
to learn well from RPS. Compared to existing approaches where the
goal is to extract time and frequency domain features to learn signal
patterns, this approach (RPS + GMM) focuses on understanding under-
lying dynamics that describes the temporal evolution of the activities
that evolve over time. The better RPS understands underlying dynam-
ics, the better GMM learns, leading to higher accuracy compared to
existing approaches.

In this paper, we investigated the performance and applicability of
the dynamical systems and chaos theory in smartphone based human
activity recognition system. We also used time-delay embedding or
reconstructed phase space to capture underlying dynamics of human
body motion for 11 different activities from smartphones’ accelerom-
eter sensor. Most of the proposed and existing approaches used three

Table 5

Comparison of representative past works on AR.
Work Activities Methodology Sensors System Features Subjects  Accuracy
Derawi and Bours (2013) Gait, 3 speed walking Cross DTW, SVM, BN, RT, MLP 3 axis Acc Smartphone 24 25 99 81.9, 89.3% °
Li et al. (1802) 5 CNN and LSTM 3 axis Acc Wearables 12 Unknown 91% "
Antos et al. (2014) 5 HMM, SVM 3 axis Acc Smartphone 106 12 90.8, 88.1, 95.2% ©
Casale et al. (2011) 6 Random Forest 3 axis Acc 1 Wearable 20 14 94%
Bao and Intille (2004) 20 DT 2 axis Acc. 5 Wearables 40 20 84%
Ravi et al. (2005) 8 NB, SVM, kNN, DT, Plurality Voting 3 acis Acc 1 Wearable 12 2 73-99% ¢
Anguita et al. (2013) 6 SVM 3 axis Acc and Gyr ~ Smartphone 561 30 96%
Kwapisz et al. (2010) 6 ST, LR, ML NN 3 axis Acc Smartphone 43 29 83% °©
Attal et al. (2015) 6 activities, 6 transitions kNN, SVM, GMM, RF, HMM, k-Means 3 axis Acc, Gyr, Mag 3 Wearables 168 6 99,83% f
Takeuchi et al. (2009) 2 activities, 4 transitions HMM 1 Axis Acc Wearable 6 to 20 3 70-80%
Rokni et al. (2018) 10 activities CNN 3 Axis Acc 5 Wearables 43 and 1170 29 95%
Our 11 RPS, GMM, MLE 1 axis Acc. Smartphone RPS 40 100, 90% &

Acronyms: DTW: Dynamic Time Warping, MLP: Multilayer Perceptron, Acc: Accelerometer, MOE: Mixture-of-Experts, GLCT: Global-local co-training, Orn:
Orientation, Mag: Magnetometer, Prox: Proximity, Gyr: Gyroscope, CNN: convolutional neural network, LSTM: Long Short-Term Memory network.

2 Walking (Individualized: 99%, Generalized: 81.9%) Gait: 89.3%.
Dateset 1: 91.7%, Dataset 2: 92.56%.

o

a o

Varies in different settings.

Mean.

Supervised: 99%, Unsupervised: 83%.
Individual: 100%, Generalized: 90%.

- o

o
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Mean 90.8% (Known location), 88.1% (Unknown location), highest 95.2% (pocket).
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axes acceleration along with other sensors (3-axes gyroscope, pressure,
magnetometer) to recognize activities. In contrast to these approaches,
we only used one axis acceleration to recognize activities. This reduces
the computational and memory complexity of the system by reducing
the size of data (from 3 to 7 time series to 1 time series) that needs to be
processed. Moreover, most of the machine learning techniques require
extensive computation and occupy large memory because of the large
number of attributes that are present in the feature vectors (Lara and
Labrador, 2013). Building RPSs are less complex and less expensive
than these techniques. This is very helpful for implementation of the
system on the smartphone. We also reduced computational and mem-
ory complexity by considering a small sample size. We used a statistical
learner to train captured underlying dynamics in the RPSs and used
maximum likelihood classifier to classify activities.

We implemented our system (as android application) in two differ-
ent case studies: 1) a rehabilitation clinic, to track patients daily activ-
ities and assess assigned task and daily routine, 2) the Hajj, to track
pilgrims’ location based on their activities. We used Android platform
for the implementation. We published our dataset on a public domain
website to enrich human activity dataset and accelerate research in this
area.

8. Conclusion

We experimented with an alternative approach to extensively used
machine learning techniques in human activity recognition from kine-
matics sensors (accelerometer) and achieved a very good accuracy. We
also investigated the performance of the proposed approach using col-
lected and publicly available human activity recognition datasets. We
present a comparative study and an analysis. Application of the pro-
posed system in wearable sensor based activity recognition can be
researched further. The analysis of the experiment and results from
the case studies can be a future work. Investigation of the proposed
approach using 3-axes acceleration and other sensors can be researched
further.

The functional or complex activities comprise of a simple activity
and a particular function. For example, when a person is reading a
book, it is most likely that the person is sitting somewhere. Thus, simple
activities provide influential information about complex activities. We
developed this simple activity recognition system to progress our work
on the complex activity recognition system, where this simple activity
will be considered as one of the inputs beside location and time to pre-
dict functional activities (Gani et al., 2017). Also, a long-term monitor-
ing of simple activities will facilitate estimation of composite activities
and provide important parameters to evaluate quality of life.

Human activity recognition plays a very important role in many
research areas and applications. Therefore, a support system that will
provide information about current activity of a user by hiding all the
complex details behind activity recognition is an in-demand service for
these areas. We have started to implement the proposed activity recog-
nition system on the smartphones’ application framework as a service.
The applications from the application layer and other services from the
application framework will be able to access it to get the activity infor-
mation. This service will make building HAR applications easier.
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