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Abstract -  An approach is presented in this paper for 
vowel classification by analyzing the dynamics of speech 
production in a reconstructed phase space. The proposed 
approach has the ability of capturing nonlinearities that 
may exist in speech production. Global flow 
reconstruction is used to generate a quantitative 
description of the structure and trajectory of vowel 
attractors in a reconstructed phase space. A distance 
measure is defined to quantify the dynamic similarity 
between phoneme attractors. Templates of the dynamics 
for each vowel class are selected by cluster analysis. 
Classifying out-of-sample vowel phonemes is done using a 
nearest neighbor classifier. Experiments are conducted on 
both speaker dependent and independent vowel 
classification tasks using the TIMIT corpus. The 
preliminary experimental results show that vowel 
classification by nonlinear dynamics analysis can produce 
similar result when compared with a classifier using Mel 
frequency cepstral coefficient (MFCC) features. 

I. INTRODUCTION 

Traditionally, speech production has been modeled as a 
linear process. State-of-the-art speech recognition techniques 
typically use MFCC features, which are based in linear 
systems theory. However, recent work has suggested that 
nonlinearities may exist during speech production [1]. 
Conventional linear spectral methods cannot properly model 
nonlinear correlation within the signal. Therefore, methods 
that preserve nonlinearities may be able to achieve high 
classification accuracy. 

This paper explores an approach to phoneme 
classification that captures nonlinear dynamic structures. 
Specifically, a study of vowel classification, which tends to 
have lower classification accuracies than other phoneme 
categories [2], is conducted. Instead of spectral analysis, the 
proposed approach analyzes speech dynamics using phase 
space reconstruction [3], which is a technique to recover a 
system’s dynamics from observations of a single state 
variable. The reconstructed phase space (RPS) is a plot of 
time-lagged signal vectors as illustrated in Figure 1. The 
pattern traced out in the plot is called an attractor. Takens 
showed that given a large enough RPS dimension, the 
reconstruction is topologically equivalent to the original 
system [3]. Therefore, any nonlinearity existing in speech 
production may be captured in an RPS.  
 
 
 

 
Figure 1 – Attractors of phoneme /ow/, /iy/ and /ao/. 

We have previously shown that vowels have 
deterministic attractors [4]. Thus, capturing and recognizing 
those dynamic structures may provide for an alternative 
method for vowel classification. 

In this paper, global flow/vector-field reconstruction [5-7] 
is introduced to describe vowel dynamics in a global and 
quantitative manner. Dynamic similarity between vowels is 
quantified by defining a distance measure and thus vowels 
can be classified by a nearest neighbor approach. The 
proposed technique is compared to a MFCC feature based 
classifier. 

II. GLOBAL FLOW RECONSTRUCTION OF VOWEL DYNAMICS 

Using global flow reconstruction [5-7] to quantitatively 
describe vowel dynamics can be regarded as a “dynamical 
inverse problem”, which is to reconstruct an empirical 
dynamical system model equivalent to the one that originally 
generated the observed data. 

Several approaches have been taken to global flow 
reconstruction. These include multivariate orthonormal 
polynomial fitting [5-8], Gram-Schmidt orthonormalization 
[8], and least-square fitting with monomials [6]. Because of 
its numerical stability, we use Serre’s singular value 
decomposition (SVD) approach to determining the 
coefficients of the multivariate monomials [6]. 

The time-lagged signal vector is given in a form of 
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where d is the embedding dimension and τ is the embedding 
delay. The trajectory matrix X is from the time-lagged signal 
vectors x. The global model is the sum of all possible 
monomials up to order P 
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the order of the polynomial. The prediction error is defined as 
follows: 

 
( )

2 2
1

1 1
( )

N

n n
n d

error F A b
τ

α+
= + −

= − = ⋅ −∑ x x ,  

where A can be decomposed into a product of orthogonal and 
diagonal matrices.  
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Figure 2 – Dynamics representation by global models: original 

attractor /ow/ and /ay/: row 1 & 3; synthetic attractor: row 2 & 4. 

To ensure the classification performance arises solely 
from measuring dynamic structures and not amplitude 
variation, the vowel signals are normalized to zero mean and 
unit variance. 

The ability of this approach to model the dynamics of 
vowels is first illustrated qualitatively as illustrated in Figure 
2. A strong similarity between the original attractors and their 
synthetic counterparts generated from the learned global 
models is seen. 

Synthetic trajectories are generated by iterating the 
global model with a stable initial condition. An initial 
condition is selected from the original attractor to minimize 
the possibility of iterations diverging to infinity. This is 
because the global model has no information about the 

neighborhood of the attractor. When a trajectory is outside of 
the attractor it may quickly diverge towards infinity. 

However, stable synthetic attractors have been acquired 
for all the tested vowels for several seed values. It can be 
observed that the synthetic attractors have a good 
representation of the original attractor, at least in terms of 
describing the skeleton of dynamic structures. Two examples 
are shown in Figure 2 for the lowest three Broomhead-King 
coordinate projections [6]. 

As described in [5, 6], it is observed that minor noise 
contamination of the original time series helps to stabilize the 
generation of a synthetic attractor. The noise broadens the 
attracting neighborhood of the attractors, thus allowing 
iteration error at each step to vary within a larger range, 
thereby increasing the possibility of completing the iteration 
without blow-up.  
 

Figure 3 – Global modeling of an attractor (Row 1): a stable 
iteration map (Row 2) and an unstable iteration map (Row 3). 

 
In addition, there are cases where a stable iteration map 

cannot be acquired. However, the global model may still 
provide a good description of the dynamic structure of the 
original attractor. Figure 3 illustrates a global model that 
produces both stable and unstable synthetic maps with similar 
dynamic structures for different seed values. This is 
significant because we are not seeking to generate synthetic 
time series to infer quantifiable invariants of unknown 
dynamics, rather to ensure that dynamic structure can be well 
described by a global model for classification purposes.  

III. MEASURING THE DYNAMIC SIMILARITY OF TWO 
ATTRACTORS 

One-step cross prediction error is used as a distance 
measure to quantify the dynamic similarity of the attractors. 
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where d is the embedding dimension, τ is the embedding 
delay, and ( ),f x y  is a projection difference measure defined 
in Figure 4. 
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Figure 4. Distance to quantify similarity of the dynamics of two 

vowel attractor. 

An analysis of vowel attractor patterns indicates that 
there are subclasses of attractors associated with each vowel. 
To determine these subclasses a clustering algorithm (Ward’s 
amalgamation method) is applied to the matrix of within class 
attractor distances. An example cluster tree is shown in 
Figure 5. A random exemplar from each cluster is selected as 
the prototype for that subclass. 
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Figure 5. Example of cluster tree of an /ao/ phoneme class 

IV. EXPERIMENTS 

Both speaker dependent and speaker independent 
experiments have been conducted using the TIMIT corpus. 
The training and testing sets consist of randomly selected 24 
male speakers with three speakers from each of eight dialect 
regions. Speaker dependent experiments are carried out with 
the testing set. The parameters for the experiments are: 5-
dimension embedding, 4th order polynomial fitting, and an 
embedding delay of 6, which was determined by examining 
the first minimum of the average mutual information of 
speech time series. 

The speaker-dependent classification results are 
compared with a Naive-Bayes classifier using 12-cepstral 
coefficients as features to a Gaussian Mixture Model. 
Experiment results are listed in Tables 1-3. 

 

 /ao/ /ay/ /ey/ /ix/ /iy/ /ow/ /oy/ 
/ao/ 121 9 0 2 0 24 1 
/ay/ 50 46 0 11 0 9 6 
/ey/ 8 4 19 49 14 8 1 
/ix/ 7 1 10 359 35 7 4 
/iy/ 4 1 11 236 129 2 0 
/ow/ 38 2 1 6 1 44 12 
/oy/ 19 2 0 0 0 11 7 

Table 1. 24-Speaker independent test by dynamics modeling. 
Overall accuracy = 725/1331 = 54.5% 

 
 /ao/ /ay/ /ey/ /ix/ /iy/ /ow/ /oy/ 

/ao/ 131 6 0 1 0 18 1 
/ay/ 34 67 0 16 0 4 1 
/ey/ 8 4 18 56 11 6 0 
/ix/ 3 5 10 339 58 8 0 
/iy/ 9 1 10 185 177 1 0 
/ow/ 53 3 2 9 1 35 1 
/oy/ 17 4 1 1 0 10 6 

Table 2. 24-Speaker dependent test by dynamics modeling.  
Overall accuracy = 773/1331 = 58.1% 

 
 /ao/ /ay/ /ey/ /ix/ /iy/ /ow/ /oy/ 

/ao/ 90 9 0 1 0 37 20 
/ay/ 2 97 4 8 0 0 11 
/ey/ 0 3 53 24 21 0 2 
/ix/ 0 11 66 252 59 21 14 
/iy/ 0 1 52 69 257 1 3 
/ow/ 17 7 0 6 0 49 25 
/oy/ 5 2 0 2 0 18 12 

Table 3 24-Speaker dependent test using cepstral features.  
Overall accuracy = 810/1331 = 60.1% 

 
It is interesting to see that dynamics analysis produces 

similar results for both speaker dependent and independent 
tests, which normally does not hold for the spectral analysis 
based phoneme recognitions.  

Vowel classification by the dynamics analysis also 
produces comparable results to the cepstral coefficients based 
classifier in the speaker dependent test. It can be observed 
that in both cases, the distribution of misclassified examples 
share some degree of consistency.  

V. CONCLUSIONS 

In this paper, speech is treated as a signal generated by a 
dynamical system. By globally modeling speech attractors 
and computing distance between them, we explore a new 
processing domain for speech recognition. Future work to 
improve classification results may include refining modeling 
technique, template selection, and distance measures. It is 
expected that the advantages of dynamic analysis, such as 
being able to capture signal nonlinearities, can be combined 
with traditional features and methods for both isolated and 
continuous speech processing applications. These preliminary 
results clearly indicate the potential of dynamics analysis for 
speech processing.  
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