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Abstract - This paper presents a study of the attractor 
variation in the reconstructed phase spaces of isolated 
phonemes. The approach is based on recent work in time-
domain signal classification using dynamical signal 
models, whereby a statistical distribution model is 
obtained from the phase space and used for maximum 
likelihood classification. Two sets of experiments are 
presented in this paper. The first uses a variable time lag 
phase space to examine the effect of fundamental 
frequency on attractor patterns. The second focuses on 
speaker variability through an investigation of speaker-
dependent phoneme classification across speaker sets of 
increasing size.  

I. INTRODUCTION 

State of the art speech recognition systems typically use 
cepstral coefficient features, obtained via a frame-based 
spectral analysis of the speech signal [1]. However, recent 
work in phase space reconstruction techniques [2, 3] for 
nonlinear modeling of time-series signals has motivated 
investigation into the efficacy of using dynamical systems 
models in the time-domain for speech recognition [4]. In 
theory, reconstructed phase spaces capture the full dynamics 
of the underlying system, including nonlinear information not 
preserved by traditional spectral techniques, leading to 
possibilities for improved recognition accuracy. 

The classical technique for phoneme classification is 
Hidden Markov Models (HMM) [5, 6], often based on 
Gaussian Mixture Model (GMM) observation probabilities. 
The most common features are Mel Frequency Cepstral 
Coefficients (MFCCs).  

In contrast, the reconstructed phase space is a plot of the 
time-lagged vectors of a signal. Such phase spaces have been 
shown to be topologically equivalent to the original system, if 
the embedding dimension is large enough [7]. Structural 
patterns occur in this processing space, commonly referred to 
as trajectories or attractors, which can be quantified through 
invariant metrics such as correlation dimension or Lyapunov 
exponents or through direct models of the phase space 
distribution. Previous results on phoneme classification [4] 
have shown that a Bayes classifier over statistical models of 
the reconstructed phase spaces are effective in classifying 
phonemes.  

 
 

Phase space reconstructions are not specific to any 
particular production model of the underlying system, 
assuming only that the dimension of the system is finite. We 
would like to be able to take advantage of our a priori 
knowledge about speech production mechanisms to improve 
usefulness of phase space models for speech recognition in 
particular. 

In pursuit of this, we have implemented two sets of 
experiments to study attractor variation, the first to look at 
fundamental frequency effects in vowels and the second to 
look at speaker variability issues. Fundamental frequency, as 
a parameter that varies significantly but does not contain 
information about the generating phoneme, should clearly 
affect the phase space in an adverse way for classification. 
This hypothesis is examined through a compensation 
technique using variable lag reconstructions. Speaker 
variability is an as of yet unknown factor with regard to the 
amount of variance caused in underlying attractor 
characteristics, and is an important issue in the question of 
how well this technique will work for speaker-independent 
tasks. Initial experiments have shown some significant 
discriminability in such tasks, but performed at a measurably 
lower accuracy than that for speaker-dependent tests.  

Each of these experiments use a nonparametric 
distribution model based on bin counts with a maximum 
likelihood phoneme classifier, as described in more detail in 
the next section. The TIMIT database is used for both tasks. 

II. METHOD 

II.1. Phase Space Reconstruction 
Phase space reconstruction techniques are founded on 

underlying principles of dynamical system theory [7, 8] and 
have been applied to a variety of time series analysis and 
nonlinear signals processing applications [2, 3]. Given a time 
series 
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where n is a time index and N is the number of observations, 
the vectors in a reconstructed phase space are formed as 
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where τ  is the time lag and d is the embedding dimension. 
Taken as a whole, the signal forms a trajectory matrix 
compiled from the time-lagged signal vectors: 
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Figure 1 shows an illustrative two-dimensional 
reconstructed phase space trajectory, while Figure 2 shows 
the same space with individual points only, as modeled by the 
statistical approach used here. 

 

 
Figure 1 – Reconstructed phase space of the vowel phoneme 

/aa/ illustrating trajectory 

 
Figure 2 – Reconstructed phase space of the vowel phoneme 

/aa/ illustrating density 

The time lag used in the reconstructed phase space is 
empirical but guided by some key measures such as mutual 
information and autocorrelation [2, 3]. Using such measures, 
a time lag of six is appropriate for isolated phoneme 
recognition using TIMIT. For the variable lag experiments 
baseline time lags of 6 and 12 are used, as discussed in details 
later. 

In practice, the phase-space reconstruction is zero-
meaned and the amplitude variation is radially normalized 
via: 
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where nx  is an original point in the phase space and Xµ  is 
the sample mean of the columns of X . 

 
II.2. Nonparametric Distribution Model of Reconstructed 

Phase Space 
A statistical characterization of the reconstructed phase 

space, related to the natural measure or natural distribution of 
the underlying attractor [2, 3], is estimated by dividing the 
reconstructed phase space into 100 histogram bins as is 
illustrated in Figure 2. This is done by dividing each 
dimension into ten partitions such that each partition contains 
approximately 10% of the data points. The intercepts of the 
bins are determined using all the training data. 

 
II.3. The Bayes Classifier 

The estimates of the natural distribution are used as 
models for a Bayes classifier. This classifier simply computes 
the conditional probabilities of the different classes given the 
phase space and then selects the class with the highest 
conditional probability: 
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where ( )ˆ i np x  is the bin-based likelihood of a point in the 
phase space, C is the number of phoneme classes, and c is the 
resulting maximum likelihood hypothesis. 

III. EXPERIMENT DESIGN 

III.1. Variable Lag Model for Vowels 
The basic idea of this experiment is to use variable time 

lags instead of a fixed time lag for embedding vowel 
phonemes, as a function of the underlying fundamental 
frequency of the vowel. An estimate of the fundamental 
frequency is used to determine the appropriate embedding 
lag.  

The fundamental frequency estimate algorithm for 
vowels used here is based on the computation of 
autocorrelation in the time domain as implemented by the 
Entropic ESPS package [9].  

The typical vowel fundamental frequency range for male 
speakers is 100~150Hz, with an average of about 125Hz, 
while the typical range for female speakers is 175~256Hz, 
with an average of about 200Hz. For this experiment only 
male speakers were used. In the reconstructed phase space, a 
lower fundamental frequency has a longer period, 
corresponding to a larger time lag. With a baseline time lag 
and mean fundamental frequency given as τ  and 0f  
respectively, we perform fundamental frequency 
compensation via the equations 
 0 0f fτ τ ′ ′=  
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where τ ′  is the new time lag and 0f ′  is the fundamental 
frequency estimate of the phoneme example. This time lag is 
rounded and used for phase space reconstruction, for both 
estimation of the phoneme distributions across the training set 
and maximum likelihood classification of the test set 
examples. 

Two different baseline time lags are used in the 
experiments. A time lag of six corresponds to that chosen 
through examination of the mutual information and 
autocorrelation heuristics; however, rounding effects lead to 
quite a low resolution on the lags in the experiment, which 
vary primarily between 5, 6, and 7. To achieve a slightly 
higher resolution, a second set of experiments at a time lag of 
12 is implemented for comparison. Since the final time lags 
used for reconstruction are given by a fundamental frequency 
ratio, the value of the baseline frequency is not of great 
importance, but should be chosen to be near the mean 
fundamental frequency. A baseline of 129Hz was 
investigated as selected from the mean fundamental 
frequency of the training set. The final time lag is given in 
accordance with equation (1) above. 

The data set used here includes six male speakers for 
training and three different male speakers for testing, all 
within the same dialect region. 

 
III.2. Speaker Variability  

Using the phase space reconstruction technique for 
speaker-independent tasks clearly requires that the attractor 
pattern across different speakers is consistent. Inconsistency 
of attractor structures across different speakers would be 
expected to lead to smoothed and imprecise phoneme models 
with resulting poor classification accuracy. The experiments 
presented here are designed to investigate the inter-speaker 
variation of attractor patterns. Although a number of different 
attractor distance metrics could be used for this purpose, the 
best such choice is not readily apparent and we have instead 
focused on classification accuracy as a function of the 
number of speakers in a closed-set speaker dependent 
recognition task. The higher the consistency of attractors 
across speakers, the less accuracy degradation should be 
expected as the number of speakers in the set is increased. 

All speakers are male speakers selected from the same 
dialect region within the TIMIT corpus. The bin-based 
models and maximum likelihood classification methods 
discussed previously are used in all cases. The only variable 
is the number of speakers for isolated phoneme classification 
tasks.  

To examine speaker variability effects across different 
classes of phonemes, vowels, fricatives and nasals are tested 
separately. The overall data set is a group of 22 male 
speakers, from which subsets of 22, 17, 11, 6, 3, 2 or 1 
speaker(s) have been randomly selected. Classification 

experiments are performed on sets of 7 fricatives, 7 vowels, 
and 5 nasals.  

IV. RESULTS 

IV.1. Variable Lag for Vowels 
A seven-vowel set [9] is used for these experiments. As 

described previously, data are selected from 6 male speakers 
for training and 3 different male speakers for testing, all 
within the same dialect region. 

There are four experiments, two with a baseline lag of 6 
and two with a baseline lag of 12. In each case, the tests are 
run with a fixed lag as well as with variable lags. The four 
experiments are summarized as follows: 
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where d is the embedding dimension, τ  is the default time 
lag, 0f  is the default fundamental frequency, 0f ′  is the 
estimated fundamental frequency, and τ ′  is the actual 
embedding time lag. 

Table 1 shows the resulting ranges for τ ′  given the 
parameters, while Tables 2 and 3 show the classification 
results. 

 
τ  0f  τ ′  

6 129Hz 5~8 

12 129Hz 10~15 

Table 1 – Range of τ ′  given τ  and 0f  

Exp 1 Exp 2 

27.70% 36.49% 

Table 2 – Vowel phoneme classification results for lag of 6 

 
Exp 3 Exp 4 
39.19% 38.51% 

Table 3 – Vowel phoneme classification results for lag of 12 

As can be seen from the above results, the significant 
improvement of classification accuracy is obtained by using a 
variable lag model with baseline lag of 6. The classification 
accuracy is almost unchanged with baseline lag of 12. More 
interesting perhaps than the original question of variable lag 
is the large impact that changing the baseline from 6 to 12 
had on the accuracy of this system, which we are working to 
investigate further. 

 



IV.2. Speaker Variability 
The evaluation of speaker variability was carried out 

using the leave-one-out cross validation. The overall 
classification accuracies for the three types of phonemes are 
shown in Table 4, Table 5 and Table 6. 
 

Spkr# 1 2 6 11 17 22 
Acc(%) 58.00 51.06 49.26 49.02 47.98 48.58 

Table 4 – Phoneme classification results of fricatives with different 
numbers of speakers 

Spkr# 1 2 6 11 17 22 
Acc(%) 61.90 49.09 49.58 46.92 45.46 46.03 

Table 5 – Phoneme classification results of vowels with different 
numbers of speakers 

Spkr# 1 2 3 6 11 17 22 
Acc(%) 51.79 40.00 31.91 29.95 29.71 27.79 26.76 

Table 6 – Phoneme classification results of nasals with different 
numbers of speakers 

Figure 3 is a visual interpretation of the results presented 
above. The classification results are plotted against the 
number of speakers for vowels, fricatives and nasals 
respectively. 

 
Figure 3 – The classification accuracy vs. number of speakers 

As can be seen from Figure 3, the degree of attractor 
variation across speakers is different for these three types of 
phonemes. Nasals appear to have the largest variability while 
the fricatives have the least, which is consistent with the 
results reported in the previous paper [4], for a speaker-
independent task over vowels, nasals, and fricatives. In all 
three phoneme types, the accuracy was relatively unchanged 
after 2 or 3 speakers. 

V. DISCUSSION AND CONCLUSIONS 

We have examined attractor variation in the 
reconstructed phase space of isolated phonemes. The variable 
lag experiments show an improvement in overall accuracy 

when the phase space incorporates fundamental frequency 
compensation. The large difference between the baseline 
numbers in the variable lag experiments has several possible 
causes, including effects due to speaker variability and small 
data set size. The speaker variability experiments indicate 
that there is a significant amount of consistency across 
attractor patterns between speakers, which shows that the 
reconstructed phase space representation of speech signal has 
the discriminative power for the speaker-independent tasks. 
Future work includes additional investigation on the effect of 
fundamental frequency on attractor patterns and discovering 
methods to compensate for speaker variability in phase space 
reconstruction techniques for speech recognition applications. 
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