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ABSTRACT 

QUANTIFYING FORECAST UNCERTAINTY IN THE ENERGY DOMAIN 

Mohammad Saber, B.S., M.S. 

Marquette University, 2017 

This dissertation focuses on quantifying forecast uncertainties in the energy 
domain, especially for the electricity and natural gas industry. Accurate forecasts help the 
energy industry minimize their production costs. However, inaccurate weather forecasts, 
unusual human behavior, sudden changes in economic conditions, unpredictable 
availability of renewable sources (wind and solar), etc., represent uncertainties in the 
energy demand-supply chain. In the current smart grid era, total electricity demand from 
non-renewable sources influences by the uncertainty of the renewable sources. Thus, 
quantifying forecast uncertainty has become important to improve the quality of forecasts 
and decision making. 

In the natural gas industry, the task of the gas controllers is to guide the hourly 
natural gas flow in such a way that it remains within a certain daily maximum and 
minimum flow limits to avoid penalties. Due to inherent uncertainties in the natural gas 
forecasts, setting such maximum and minimum flow limits a day or more in advance is 
difficult. Probabilistic forecasts (cumulative distribution functions), which quantify 
forecast uncertainty, are a useful tool to guide gas controllers to make such tough 
decisions. 

Three methods (parametric, semi-parametric, and non-parametric) are presented 
in this dissertation to generate 168-hour horizon probabilistic forecasts for two real 
utilities (electricity and natural gas) in the US. Probabilistic forecasting is used as a tool 
to solve a real-life problem in the natural gas industry. A benchmark was created based 
on the existing solution, which assumes forecast error is normal. Two new probabilistic 
forecasting methods are implemented in this work without the normality assumption. 

There is no single popular evaluation technique available to assess probabilistic 
forecasts, which is one reason for people’s lack of interest in using probabilistic forecasts. 
Existing scoring rules are complicated, dataset dependent, and provide less emphasis on 
reliability (empirical distribution matches with observed distribution) than sharpness (the 
smallest distance between any two quantiles of a CDF). A graphical way to evaluate 
probabilistic forecasts along with two new scoring rules are offered in this work. The 
non-parametric and semi-parametric probabilistic forecasting methods outperformed the 
benchmark method during unusual days (difficult days to forecast) as well as on other 
days. 
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INTRODUCTION TO FORECAST UNCERTAINTY QUANTIFICATION 

This dissertation focuses on improving the quality of natural gas and electric 

demand forecasts by studying two types of forecasts: point forecasts and probabilistic 

forecasts. A point forecast provides a single-valued best estimate, whereas a probabilistic 

forecast helps to quantify the uncertainty of a future event with a cumulative distribution 

function (CDF). Probabilistic forecasts add useful information to point forecasts, when 

the forecasted event is associated with uncertain factors. For example, energy demand is 

highly correlated with weather conditions, human behavior, and economic conditions, 

which are all uncertain. In this dissertation, probabilistic forecasts are used to quantify the 

forecast uncertainties in the energy domain. Section 1.1 describes the problem statement 

of this dissertation. A concise overview of the electricity and natural gas industries are 

included in Section 1.2. The importance of quantifying forecast uncertainty in the energy 

industry and the contributions of this dissertation are explained in the following sections. 

Finally, the outline of the dissertation is given at the end of this chapter.      

1.1 Problem Statement: Quantifying Forecast Uncertainty 

The problem addressed by this dissertation has two parts. The first part describes 

the problem statement in the context of the natural gas industry, and the second part 

provides the electricity industry version of the problem statement.  
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Figure 1.1: Sample hourly actual and forecasted gas flow. 

In the natural gas industry, gas controllers continuously monitor the contractual 

hourly maximum flow, as shown in Figure 1.1. This is the hourly maximum gas draw 

limit from a gas supply pipeline to a gas utility. This limit is usually set in the morning 

for the coming gas day (9 A.M. – 9 A.M., Chicago time). If the gas demand for any hour 

crosses this limit, then the gas utility has to purchase extra gas from the spot market, 

which is sometimes several times higher than the usual price [1].  Currently, gas utilities 

use point forecasts to decide the level of the contractual hourly maximum flow. However, 

point forecasts do not convey the uncertainty associated with a future event. It is expected 

that the actual flow will differ from the point forecasts most of the time. In Figure 1.1 

(gas flow at 10 A.M. means the total gas flow from 9 A.M. to 10 A.M.), a cartoon 

scenario is shown in which point forecasts do not provide enough information about the 

possibility of crossing the maximum gas flow limit. Probabilistic forecasts, which 
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provide a more complete view of a future event, are useful tools for the gas controllers to 

determine the risk of exceeding the contractual hourly maximum flow. 

 

Figure 1.2: Sample hourly cumulative actual and forecasted gas flow. 

Similarly, the gas controllers have to guide the gas flow such that at the end of the 

gas day, the cumulative gas flow for the gas day remains within a certain range. The 

upper flow limit is called the contract high limit, and the lower limit is called the contract 

low limit. Both are illustrated in Figure 1.2. These limits are set when the gas purchasing 

contract was signed between the gas utilities and the gas suppliers early in the morning 

(before the start of the gas day). Consequences of crossing the boundaries are similar to 

penalties for crossing the contractual hourly maximum flow. These problems were 

brought to our attention by GasDayTM customers Tom Connery and Tyler Stephens in 

describing some of the challenges of their operations as gas controllers in a local 
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distribution company (LDC) [2]. The point forecasts cannot provide enough information 

to help the gas controller to guide the cumulative actual flow within the contract high and 

low limit. On the other hand, the probabilistic forecasts offer additional guidance to 

support crucial decisions.  

In the electricity industry, forecasts are required to make planning and 

maintenance decisions [3, 4, 5]. One of the major differences between natural gas and 

electricity production is that the electricity plants produce electricity when it is required 

and supply it immediately to the customers because storage of electricity is expensive. 

Hence, any excess production of electricity means wasted energy, and a shortage of 

electricity may lead to a blackout. To avoid a blackout in case of higher than expected 

demand, electricity distribution companies can buy extra electricity on the spot market (if 

available), which usually is higher than the normal production costs. Thus, electricity 

distribution companies use electricity demand forecasts for careful planning of electricity 

purchases and generation. 

In the smart grid era [6], electricity demand has become highly unpredictable    [6, 

7, 8]. The smart grid is a two-way communication between electricity consumers and 

producers. All types of power plants (renewable, oil, coal, gas, and nuclear) are 

connected to a single (smart) grid to provide customers an opportunity to choose the best 

energy options for power. The U.S. government is encouraging electricity consumers to 

use clean energy sources by providing incentives [9] to meet the goal of reducing carbon 

emission by 26-28% below 2005 levels by 2025 [10]. Therefore, the renewable sources 

such as wind and solar are becoming major contributors to the smart grid system. 
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However, wind and solar power are not available all the time, and the intensity of these 

natural sources vary. If renewable sources are not available, other sources (oil, gas, coal, 

nuclear) are needed to fill the gap to insure an uninterrupted power supply. When 

renewable sources are abundant, the demand for nonrenewable source generated 

electricity is expected to be less, due to subsidies on renewable sources. The uncertainty 

of the availability of wind and solar energy affect the predictability of nonrenewable 

sources. Existing point forecasting methods do not work well to predict energy demand in 

the smart grid era. Probabilistic forecasts, which can quantify the forecast uncertainties, 

are considered as a better option for forecasting energy demand [11]. 

The next section provides a brief overview of the energy industry in the U.S. The 

following sections describe the importance of probabilistic forecasts, contributions made 

in this dissertation, and an outline of this dissertation.   

1.2 Energy Industry Overview 

Petroleum, natural gas, coal, renewable energy (wind, solar, biofuels, wood, 

hydro, geothermal, and biomass waste), and nuclear electric power are the primary 

sources of energy consumption in the U.S. [12]. Electricity, which is considered as a 

secondary source of energy, can be generated from all primary sources mentioned above. 

Datasets used in this dissertation to verify the effectiveness of our proposed models are 

collected from a local natural gas distribution company and a local electricity distribution 
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company in the U.S. This section surveys both natural gas and electricity industries in 

short for a better understanding of the methods proposed in this dissertation. 

1.2.1 Natural Gas Industry 

The natural gas supply chain has three major components: natural gas production, 

transportation, and supply to the end user (Figure 1.3). Natural gas is produced from oil 

and gas wells and stored in a gas plant storage. Pipeline companies transport the natural 

gas to local distribution companies (LDCs). Finally, LDCs supply natural gas to the end 

users.  

LDCs are responsible for ensuring an uninterrupted gas supply. This is especially 

important during the heating season, typically November to March. There are four 

categories of end users who are considered as “customers” of the LDCs. 

Residential customers use natural gas for cooking, heating and cooling spaces, 

and running appliances such as cloth dryers, pool and Jacuzzi heaters, fireplaces, 

barbecues, and outdoor lights [13]. 
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Figure 1.3: Natural gas distribution segments (adapted from [14]). 

 Commercial customers use natural gas for space heating and cooling, and steam 

heating of commercial buildings such as office buildings, schools, churches, hotels, 

restaurants, and government buildings. Members of the food service industry use natural 

gas for commercial cooking [15]. 

Both residential and commercial use of natural gas is weather dependent. In the 

winter, natural gas use peaks due to space heating, and in the summer, it is sometimes 

used for cooling. 

Industrial customers consume natural gas for the same purposes as commercial 

and residential customers such as heating, cooling, and cooking [16]. Natural gas is used 

also in industry for metal preheating, drying, dehumidification, glass melting, 
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incineration, waste treatment, and food processing. It also is used as a feedstock in the 

plastic, fertilizer, anti-freeze, and fabrics industries.  

Electric power generators use natural gas for generating electricity. Currently, 

natural gas is one of the most popular fuels for electricity generation as an 

environmentally friendly and low-cost source. In 2016, the U.S. Energy Information 

Administration (EIA) published the last 15 years (2000-2015) of total energy production 

in the U.S., where the trend suggests that the use of natural gas will increase further into 

the future [17].  

1.2.2 Electricity Industry 

Electricity is generated from the conversion of another energy source such as 

coal, solar, wind, natural gas, oil, water, or nuclear. Figure 1.4 illustrates the supply chain 

of electricity. Step-up transformers are used to transfer electricity from power plants to 

local distribution areas. Then step-down transformers are used to transfer electricity into 

the distribution lines. Finally, the customers receive electricity from distribution lines.  

Electricity usage in the United States can be divided into four major sectors [18]: 

The industrial sector is the largest consumer of electricity. This sector uses 

electricity for manufacturing, agriculture, mining, and construction. 
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Figure 1.4: Electricity supply chain (adapted from [19]). 

The transportation section is the second largest customer of electricity. This 

sector is growing fast due to popularization of electric cars. In the transportation sector, 

electricity is used also in trucks, buses, motorcycles, trains, aircraft, boats, ships, and 

barges. However, the use of electricity by trains, aircrafts, boats, ships, and barges are not 

related to daily load forecasting in the U.S. 

The residential sector uses electricity for lighting, heating and cooling, cooking, 

charging electrical equipment, and entertainment. 

The commercial sector includes office buildings, schools, universities, religious 

places, apartments, hospitals, warehouses, hotels, restaurants, and shopping malls. This 

sector uses electricity for heating, lighting, cooling, and powering electric equipment. 

Residential and commercial customers’ electricity use is weather dependent. In 

the summer, the electricity is used for cooling; and in winter, electricity is used for 

heating.     
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Figure 1.5: An overview of the smart grid (similar to [20, 21]). 

The current electricity energy supply chain is shown in Figure 1.4 has one-way 

communication from the producer of electricity (power plants) to the customers. The 

fault tolerance of the current interconnected grid system is not robust. A single point of 

failure can interrupt the power supply of other grids connected to that point [22]. The 

process of identifying the problem area and reestablishing the connection is manual and 

time consuming. Hence, in 2007, the U.S. congress passed a law mandating 

modernization of the electric grid [23]. The new electricity power grid, which is able to 
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find the disconnected region automatically and reroute the electricity supply to ensure 

uninterrupted power supply, is known as the “smart grid” [24].  

The smart grid provides bidirectional communication between customers and 

producers (power plants) [25]. Figure 1.5 illustrates the important components of the 

smart grid. The use of the smart meters (an electric device that records electric energy at 

shorter-than-hourly intervals and returns the result back to utilities and customers at least 

daily [26]) allows customers to check their electricity consumption in near real time. 

Hence, customers can set their smart appliances to work during off-peak hours to reduce 

their electricity bills [27]. In the new grid system, residential and commercial customers 

can act as energy producers through rooftop solar panels. Customers can sell the excess 

electricity to local utility companies. Residential customers can store electricity in their 

electric vehicle or in a home power station (storage connected to solar generation) during 

off-peak hours and use it during peak hours. In the current energy supply model, 

electricity storage is not considered due to its high cost. However, the electric car may 

play a major role of storing electricity in the future. Renewable energy sources such as 

wind and solar energy are important parts of the smart grid. Recently, the U.S. 

government set a target to reduce climate pollution by 26-28 percent below 2005 levels 

by 2025 [10]. Thus, it is expected that renewable power plants will grow rapidly in the 

near future with the help of subsidies provided by the U.S. government [9].  

The next section will explain the importance of probabilistic forecasts in the 

energy industry.  
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1.3 Importance of Probabilistic Forecasts 

In both the natural gas and electricity industries, forecasts are required every day 

to plan for the needed energy supply [28]. An accurate point forecast leads to efficient 

planning, which maximizes the profit of doing business for local energy distribution 

companies by reducing the production and distribution cost of natural gas and electricity. 

Over- and under-forecasts both increase the unit price of natural gas (Figure 1.2) and 

electricity distribution because of last minute adjustments. Perfectly accurate forecasts 

are not possible due to inherent uncertainties involved with the output of mathematical 

models. Thus, understanding the uncertainties in natural gas and electricity forecasting 

models allow energy distributors to make more cost-effective decisions.  

Uncertainties are classified into two categories: “aleatory” (irreducible or random) 

and “epistemic” (reducible, but enough information is not available at this moment) [29]. 

In natural gas and electricity forecasting, uncertainties arise from different sources. 

Uncertain weather forecasts (temperature, wind speed, dew point), which are used as 

inputs to energy forecasting, may cause uncertainty in the model. The impact of random 

human behavior on energy consumption cannot be measured accurately. Numerical errors 

(rounding error, discretization errors) may cause epistemic uncertainty. Good data helps 

generate better mathematical models with less uncertainty; however, in practice, it is 

impossible to obtain perfect datasets. Forecasting models contain unknown errors if all 

the required factors are not included in the model. On the other hand, if all known factors 

are included, the model may become unpractical to use because of a huge calculation 
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burden and overfitting. In addition, all the factors influencing a forecasting model are not 

known [30]. Thus, uncertainties cannot be eliminated completely from forecasting 

models. Hence, probabilistic forecasts, which consider forecast uncertainties, are better 

tools than the point forecast for making business decisions (see Figures 1.1 and 1.2).  

1.4 Contributions of Quantifying Forecast Uncertainty 

This dissertation makes three major contributions. First, it provides several ways 

to generate probabilistic forecasts by analyzing error distributions from an existing point 

forecasting model.  

Secondly, there are several metrics for scoring probabilistic forecasting methods. 

However, existing techniques are dataset dependent, so the scores using the same 

evaluation metric in different research articles are not comparable. Thus, a new 

evaluation metric (scoring rule) has been implemented that is not dataset dependent. 

Finally, probabilistic forecasts are used rarely in natural gas forecasting, and they 

are new in electricity load forecasting. Therefore, showing the applications of 

probabilistic forecasts for efficient decision-making in the energy industry (natural gas 

and electricity) will encourage future researchers to work more in this field.          
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1.5 Outline of the Dissertation 

Chapter 2 provides a literature review of existing methods used for point 

forecasts, probabilistic forecasts, and evaluation metrics to assess probabilistic forecasts. 

Both point forecasts, and probabilistic forecasts are studied in three subsections: survey 

papers, statistical approaches, and machine learning approaches.   

Chapter 3 contains proposed methods of generating probabilistic forecasts. This 

chapter explains the point forecasting methods used in this research to generate 

probabilistic forecasts. The second part of the chapter presents two new evaluation 

metrics (scoring rules), named Quantile Calibration Score (QCS) and Percentage 

Quantile Calibration Score (PQCS), respectively, for measuring the goodness of 

probabilistic forecasts. 

The first part of Chapter 4 describes data collection and processing for 

implementation of the three probabilistic forecasting methods including a benchmark. 

The second part of the chapter compares the performance of probabilistic forecasting 

methods with a naive benchmark model on real data collected from natural gas utilities 

and electricity utilities. All probabilistic forecasting methods are evaluated using the 

scoring rules presented in Chapter 3 and two widely used existing scoring rules. 

Performance analysis of the probabilistic forecasting methods during unusual days (such 

as bitter cold days, big temperature swings) are included also in this chapter.  
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Chapter 5 concludes the dissertation with a summary, conclusions, and 

suggestions for future work.        
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QUANTIFYING FORECAST UNCERTAINTY: LITERATURE REVIEW 

Energy demand forecasting is more than a century old problem [31]. A good 

demand forecast saves millions of dollars and ensures quality of service in the energy 

industry [1, 32, 33, 34]. Pierre Pinson, in his Ph.D. dissertation, established that advanced 

point forecasts can help to reduce regulation cost by 38%, and knowing reliably the 

uncertainty can decrease the regulation cost by another 39% [35, 36]. Although 

quantifying forecast uncertainty may support better decisions in the energy industry, few 

research articles have been published on quantifying forecast uncertainty compared to 

thousands of journal articles on point forecasting [37]. This chapter presents existing 

methods for generating point forecasts and probabilistic forecasts. Existing evaluation 

techniques of probabilistic forecasts are reviewed at the end of the chapter. 

2.1 Point Forecasts 

Forecasts has been used in economics, meteorology, and energy for a long time 

[38, 39, 40]. In 1980, the IEEE Load Forecasting Working Group published a 

bibliography of load forecasting papers; where the earliest article on point forecasting 

was published in 1918 [38]. For the last three decades, thousands of papers have been 

published on point forecasting techniques [37]. It is difficult to fit every articles in load 

forecasting field in one chapter, because there are so many. Thus, survey papers are 
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useful to cover many articles concisely. The next subsection contains a review of highly 

cited papers on load forecasting. The subsequent subsections review load forecasting 

literature in two parts: statistical approaches and machine learning approaches. 

Sometimes it is difficult to separate statistical methods from machine learning 

approaches. However, this division is useful to help understand the literature. The main 

focus of this dissertation is to quantify uncertainty using probabilistic forecasts. However, 

initially a point forecasting method was required to generate the desired probabilistic 

forecasts. This section provides the background needed to understand the point 

forecasting methods used in this dissertation.  

2.1.1 Point Forecasting Review  

Gross et al. (1987) offered a tutorial review of short-term load forecasting (STLF) 

by discussing: 1) importance and application of STLF; 2) essential factors to consider 

during load forecasting; 3) different forecasting models of STLF; 4) practical 

considerations to implement STLF; and 5) use of STLF in control center environments 

[4].  The authors mention weather, time, economic, and random effects as four major 

driving factors of STLF. Three types of performance measures are proposed in that 

article: a) accuracy, b) ease of use, and c) outlier detection and correction capabilities. 

The authors point out many important issues such as error analysis, holiday effects, bad 

data handling, and complete automation of the forecasting process. These issues are still 

considered as major concerns for STLF. 
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Moghram et al. (1989) did a comparative evaluation of five short-term load 

forecasting techniques: 1) multiple linear regression; 2) stochastic time series; 3) general 

exponential smoothing; 4) state space method; and 5) knowledge-based expert system 

[41]. Data from a utility in the southern U.S. was used to compare these five forecasting 

methods. The knowledge-based expert system outperformed the other four approaches. 

However, the authors made several unreasonable assumptions. For example, perfect 

weather forecasts are assumed, and the base loads of weekends and weekdays are 

assumed to be the same. The proposed point forecasting method used in this dissertation 

does not require any of these assumptions. 

Bunn (2000) provided a review of some important issues for making price-

sensitive decisions in the competitive electricity market [42], such as the effect of 

forecasting error on profit, importance of day-ahead weather based forecasts, dynamic 

price response, increase of distributed and embedded electricity generation, and the 

importance of market share forecasting. Specific emphasis has been given to 

segmentation of forecast variables, combination of the forecasting methods, and the use 

of neural networks for electricity load and price forecasting. The author suggest 

combining traditional time series methods with artificial neural networks (ANNs). 

Hippert et al. (2001) reviewed a collection of ANN-based STLF articles from 

1991 to 1999 [43]. They described the design process of STLF in four steps: 1) data pre-

processing; 2) ANN design; 3) ANN implementation; and 4) validation. The authors 

identified two major concerns about ANN-based methods: over-parameterization and 

non-systematic testing. The over-parameterization leads to “overfitting” the data, which 
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gives better training results, but worse performance on unseen data. According to the 

authors’ observations, some of the work on ANNs did not follow standard statistical 

reporting procedures. Additionally, results were not compared with standard benchmarks.    

Alfares et al. (2002) presented a review by classifying electric load forecasting 

into nine categories: 1) multiple regression; 2) exponential smoothing; 3) iterative 

reweighted least-squares; 4) adaptive load forecasting; 5) stochastic time series; 6) auto 

regressive moving average models with exogenous inputs (ARMAX) models based on 

genetic algorithms; 7) fuzzy logic; 8) artificial neural networks (ANN); and 9) knowledge 

based expert systems [44]. The paper briefly described the methods and offered 

advantages and disadvantages. The authors mentioned fuzzy logic, genetic algorithms, 

expert systems, and neural networks as the most popular techniques among the nine 

categories based on number of publications in load forecasting in the early 2000s.  

Weron (2006) offered a comprehensive review of statistical tools that can be used 

to analyze and forecast electricity load and price [3], such as seasonal decomposition, 

exponential smoothing, spike preprocessing, regime-switching models, and jump-

diffusion models. A detailed structure of the electricity market in Europe, North America, 

Australia, and New Zealand was provided. Sixteen cases studies were included. 

Implementation of different statistical techniques, electricity load and price data, and 

learning toolboxes in MATLAB and SAS were provided. 

Hong (2010) reviewed the last four decades of load forecasting articles in his 

Ph.D. dissertation [45]. He implemented three techniques to generate point forecasts for a 
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medium size utility in the U.S.: 1) multiple linear regression, 2) fuzzy regression, and 3) 

artificial neural networks (ANN). A brief tutorial on multiple linear regression, 

polynomial regression, interaction effects, fuzzy logic, artificial neural networks, most 

useful lag terms, weekend effects, and holiday effect are provided. A benchmark for each 

of the methods was created for comparison. In the case study, linear regression 

outperformed the other two methods. However, it cannot be concluded that linear 

regression always outperforms fuzzy logic and neural networks. The outcome may be 

different in different case studies [46].     

In 2012, the IEEE Working Group on Energy Forecasting organized a Global 

Energy Forecasting Competition (GEFCom2012) to bring together state-of-art methods 

for energy forecasting [47]. The competition attracted hundreds of participants, who 

contributed many novel ideas in two tracks: 1) hierarchical load forecasting and 2) wind 

power forecasting. Hong et al. (2014) reviewed the top ten winning methods from both 

tracks [47]. In the load forecasting track, four teams used multiple linear regression, two 

of them applied gradient boosting machines, and the rest of the teams used random 

forecasts, generalized additive model, wavelet decomposition, and neural networks. 

Some of the teams performed additional tasks, such as data cleaning, combining forecasts 

of more than one method, and modeling holidays. A follow-up competition of 

GEFCom2012 was held in 2014 focusing on probabilistic forecasts, which is introduced 

in Section 2.2    
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Load forecasting papers can be divided into two broad categories based on 

implementation approaches: statistical and machine learning, which are presented in the 

next two sections.    

2.1.2 Statistical Approaches for Forecasting 

Linear regression is one of the simplest and most effective statistical approaches 

used for load forecasting. Amral et al. implemented three different multiple linear 

regression models to forecast 24-hour electricity load [48]. Data collected from 

Indonesia’s South Sulewesi Power System was used as a case study. Separate datasets 

were used to forecast dry and rainy seasons, respectively. The authors mentioned that 

weather forecasting errors contribute heavily to the load forecasting error. However, 

forecasted weather data were not used in this experiment because it was not available. 

Thus, the presented load forecasting error is the best case scenario when the weather 

forecast is perfect. In this work, forecasts are made from both actual weather and 

forecasted weather datasets.  

Hong et al. focused on benchmarking STLF [45, 49]. His paper proposed a naïve 

multiple linear regression (MLR) short term load forecasting model considering linear 

trend, calendar variables, relationship between temperature and load, and interaction 

effects. This model has been used as a benchmark in a U.S. utility since 2009 and applied 

in a Canadian utility for load forecasting. The benchmark model was used in [50] to 

compare with a long term load forecast. A simplified method adapted from [51] was used 

to produce a one-year ahead load forecast from the GEFComm2012 dataset [47]. The 
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main contribution of that paper was finding appropriate temperature lag terms. The 

energy use was highly correlated with temperature. However, energy users tend to react 

late during temperature changes, which is labelled as a “recency effect” (lag) in [50].  

Xie et al. used the benchmark model presented in [45] to forecast load per 

customer [52]. The customer attrition rate was forecast using a generalized linear model 

(GLM) implemented in SAS [53]. A long-term energy forecast was calculated by 

multiplying per customer load by a projected number of customers. The MLR model 

proposed in [45] was used also as a benchmark in the hierarchical load forecasting track 

of GEFCom2012 [47]. 

One of the main challenges of hierarchical load forecasting is to deal with weather 

data from multiple weather stations for an operating area or zone. Hong et al. used a 

MLR method to rate and rank weather stations of a region [54]. Weather stations were 

combined based on their ranks. Finally, various combinations of the subset of weather 

stations were ranked using the same MLR method to select the most useful set of weather 

stations for that zone.  

Autoregressive (AR) and moving average (MA) models were first formulated by 

Yule in 1927 [55]. The widely used time series forecasting model ARMA (autoregressive 

moving average) is the combination of AR and MA models [56]. In 1970, Box and 

Jenkins integrated the existing knowledge to develop a three stage iterative process for 

time series identification, estimation, and verification, which is known as autoregressive 

integrated moving average (ARIMA) [57]. Since 1970, the ARIMA and ARMA 
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approaches were frequently mentioned as important load forecasting methods [3, 4, 28, 

33, 41, 44, 58, 59, 60, 61]. 

Huang et al. proposed a method based on ARMA with a non-Gaussian model to 

forecast one-day-ahead hourly load and one-week-ahead daily peak load [60]. The 

performance of the model was tested on the electricity demand data collected from the 

Taiwan Power Company. Load forecasts were compared with traditional ARMA and 

artificial neural networks (ANN). Both traditional ARMA and improved ARMA models 

performed better than the ANN.    

Exponential smoothing is a technique used in forecasting in which more weight is 

given to recent data, and the weight decreases exponentially for older data [62]. 

Exponential smoothing was introduced independently by Brown in 1956 [63, 64] and 

Halt in 1957 [65]. In 1960, Winters experimented using Halt’s method [66]. Although 

Halt’s original paper was not published until 2004 [67], this method became known as 

the Halt-Winter method.  

In 2006, the International Institute of Forecasters (IIF) published a review on the 

progress of time series forecasting between 1982 and 2005 [68]. The review discussed 

940 papers on time series forecasting focusing on five topics: 1) point forecasting 

methods, 2) count data forecasting, 3) forecasting evaluation, 4) combining forecasts, and 

5) density (probabilistic) forecasts. The exponential smoothing and different variants of 

the ARMA model are used by most of the researchers for time series forecasting. Non-

linear model such as artificial neural networks (ANNs) are used also for time series 
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forecasting. A vision for the next 25 years of time series forecasting by the IIF is 

included.  

Taylor et al. compared a day-ahead electricity demand forecasting performance of 

exponential smoothing with linear regression, neural networks, ARMA, and two 

benchmarks based on regression in 2006 [69]. Experiments were conducted on data from 

two different regions (Rio de Janeiro, and England and Wales). Exponential smoothing 

had better forecasts among the six methods.  

Adya et al. developed a rule-based forecasting (RBF) expert system which 

combined four statistical methods: random walk, linear regression, Holt’s exponential 

smoothing, and Brown’s exponential smoothing [70]. A heuristic method was developed 

to automate the process of weight exploration for RBF. A comparison between random 

walk, equal weight RBF, dynamic weight RBF, and automated weight RBF was shown 

based on 732 forecasts. The automation technique reduced the overhead cost of using 

RBF, which was the main contribution of that paper.   

This section has reviewed recently published point forecasting methods based on 

statistical approaches such as MLR, ARIMA, and exponential smoothing. Findings from 

most of the literature are based on specific case studies. The contradictory demand of one 

method outperforming another method proves that there is no absolute winner in this 

field of research. Moreover, the length of the forecasting dataset used as a case study for 

most of the papers cannot provide definite conclusions. Data preprocessing such as 

cleaning and weather station selection are shown useful to improve forecast accuracy. 
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2.1.3 Machine Learning Approaches for Forecasting  

This section reviews machine learning approaches such as artificial neural 

networks, support vector machines, fuzzy inference systems, genetic algorithms, and 

gradient boosting machines. 

Artificial neural networks (ANNs) have been used for STLF since the early 1990s 

[43, 45]. Jain et al. used a clustering algorithm with ANNs for producing day-ahead load 

forecasts [58]. A clustering technique was applied to find similar days based on daily 

average and peak loads. Unfortunately, the authors used only 13 weeks of data to 

compare clustering-based ANN with a simple ANN. This is too little data to capture the 

seasonal effects of electricity demand. Their results showed that the use of clustering 

techniques with ANN improved forecast performance.  

Wang et al. combined ARMA with ANNs to forecast the daily load of the 

Jiangmen Power Company [71]. Linear and non-linear components of a short-term time 

series were forecasted separately by ARMA and ANN models, respectively. Then both 

forecasts were combined to generate daily load forecasts. The experiment showed better 

performance of the combined method when compared with individual methods (ARMA 

or ANN). However, the testing dataset was very small (only 31 days).  

Siddique et al. incorporated machine learning techniques such as ANN and 

Regression Tree (RT) to learn domain knowledge of time series by input feature 

transformation [61]. The proposed method was applied to forecast daily natural gas and 

electricity demand from two locations in the United States. The process of finding the 
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best set of inputs (AR terms, day of the year, and temperature) and models (ARMA, RT, 

and ANN) was automated. An advanced version of Siddique’s linear regression model 

[46] has been adapted in this dissertation to generate point forecasts (see section 3.1).  

Osman et al. performed quarterly correlation analysis of weather inputs 

(temperature, dew point, wind speed, and humidity) with electricity load. They used data 

from the Egyptian United System to determine the most correlated weather inputs for 

each quarter of the year [72]. The selected set of inputs were fed into an ANN model to 

forecast 24-hour ahead electricity demand. The proposed method performed better 

(especially in the summer) compared with a benchmark model (traditional ANN), which 

considered temperature as the most correlated input with electricity demand for all 

seasons of the year.  

Qingle et al. pointed out that the very short-term load forecasting error based on 

ANNs is larger near peak loads [73]. Rough set theory (a set of decision rules) was 

applied to adjust the ANN-generated forecasts. Test results show that the use of a rough 

set theory adjustment significantly improved forecast accuracy. However, the test set was 

only 24 hours.  

Ramos et al. used multiple layer ANN and Halt-Winter’s exponential smoothing 

methods to generate 24 hour ahead load forecast for a Portuguese utility [74]. K-means 

clustering was used to find four distinct load profiles. Four models were created based on 

workdays, weekends, government holidays, and time interval (15 minutes and 1 hour) of 

recorded electricity demand. The authors concluded that the ANN outperformed an 
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exponential smoothing method based on forecast accuracy of a 24-hour period (first day 

of August 2011).  

Xin-hui et al. used a three-layered ANN, a four-layered ANN, and a four layered 

ANN with a genetic algorithm (GA) for short-term load forecasting [75]. These models 

were trained with and without weather inputs. The test result showed better performance 

using weather inputs. Also the four-layered ANN performed better than the three-layered 

ANN, although the four-layer ANN had fewer neurons than three-layered ANN. No 

information was provided about the dataset.   

Sun et al. used an extended Kalman filter (EKF) based ANN to forecast 24-hour 

ahead electricity demand for ISO New England [76]. EKF is used as a learning algorithm 

to train the ANN by treating the weights as a state [77]. ISO New England has a large 

geographic area containing 23 substations within two zones. Zonal load was forecast 

using a decoupled EKF. The substations with load patterns similar to the zonal load were 

forecast by simply calculating the proportion of zonal load. The rest of the substation 

load was forecasted using ANNs. The experimental result showed that the decoupling 

technique saved significant training time.  

MATLAB organized a webinar in 2016 to demonstrate existing useful MATLAB 

toolboxes for generating short-term and long-term electricity load and price forecasts 

[78]. Neural networks and regression tree methods were used to produce 24-hour ahead 

load and price forecasts from the ISO New England dataset [79]. A detailed report for 

each of the methods for both load and price forecasting tracks is available online [80, 81, 
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82]. The forecasting demo is reproducible because the code, datasets, and documentation 

are all available online. A basic framework of point forecasting has been provided in the 

code. The MATLAB electricity load forecasting model was used as a benchmark to 

improve the proposed point forecasting method used in this dissertation.       

A support vector machine (SVM) is an effective classifier [83]. This method is the 

second most used machine learning technique after ANN for load forecasting. Mohandes 

used SVMs to forecast electricity demand for the Eastern Province in Saudi Arabia [84]. 

Six years of hourly electric load were used in this experiment. Two outages, a clear 

uptrend of energy demand, and a seasonal effect (load was higher in summer than winter) 

were found during data analysis. Data was preprocessed by removing the seasonal effect, 

the trend, and the outliers. An autoregressive (AR) model was developed to compare the 

forecasting performance of the SVM. The SVM outperformed the baseline AR model.  

Shu et al. developed a hybrid model based on SVM and self-organized maps 

(SOM) to forecast electricity load [85]. A SOM network was used to cluster the data into 

several subsets including anomalous days and regular days. Then, a group of 24 SVMs 

were trained to forecast the next the 24 hours of energy demand. The proposed model 

was tested on the New York City ISO electricity load [86]. The proposed hybrid network 

was compared with a SVM and existing methods used by the New York ISO.  

Jin et al. used a grey forecasting model (a time series forecasting model, including 

a group of differential equations) and SVM to forecast electricity demand [87]. Although 

the single grey forecasting model did not provide good forecasts, two grey forecasting 
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models were combined to improve the forecasting performance. The grey forecasting 

model was used with a SVM to create a hybrid load forecasting model. The authors 

showed that the combination of SVM and grey forecasting model reduced the forecasting 

error significantly. However, the test dataset is small (5 hours of forecasts with 30 minute 

intervals).  

Escobar et al. compared two machine learning techniques: SVM and adaptive 

neuro-fuzzy inference system (ANFIS), based on short term load forecasting [88]. The 

ANFIS is the combined load forecasting method originated from ANN and fuzzy 

inference systems (FIS). The SVM performed better than the ANFIS according to one 

week of forecasting performance. A variation of SVM, called least squared SVM (LS-

SVM) was used by Espinoza et al. for short-term load forecasting [59]. The performance 

of the method was compared with a linear model with the same variables. 

Ding proposed a decision tree based method to forecast long term electricity load 

in a developing area [89]. Fourteen economic factors were used to construct the decision 

tree. The original decision tree algorithm, ID3 [90] was modified by pruning (to avoid 

overfitting) and giving more weight to recent data. The improved decision tree method 

was used to forecast three years of load demand. The mean absolute percentage error 

(MAPE) of the forecast was used to compare ID3, MLR, cubic polynomial, exponential 

curve, compertz curve, and grey model. The decision tree method produced better 

forecasts for two out of three years.  
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Hamid et al. proposed an artificial immune system (AIS) learning algorithm as an 

alternative learning algorithm to train an ANN for short-term load forecasting [91]. The 

AIS learning algorithm has four steps: initialization, cloning, mutation, and feedforward 

[92]. The weight was updated based on the clonal selection theory [93]. Two sets of 

electricity demand data, one from Kuala Lumpur, Malaysia, and another from North 

Carolina, US, were used as case studies. The accuracy of the forecast measured in mean 

absolute percentage error (MAPE) and computational speed (number of iteration and 

time in seconds) was compared with an ANN trained with back propagation (BP). In both 

accuracy and computational time, BP performed better than AIS. However, the author 

claimed that the AIS algorithm is comparable with BP. 

Hsu et al. used a fuzzy expert system to forecast the hourly load of the Taiwan 

Power Company [94]. Ranaweera et al. used the data from a large metropolitan utility in 

North America to demonstrate that the load forecasting accuracy of fuzzy logic models 

was comparable to more complicated statistical and ANN methods [95]. Similar 

experiments have been done by Pandian et al. with electricity load data from the Neyveli 

Thermal Power Station in India [96].  

Ahmadi et al. found fuzzy logic more accurate and faster than conventional 

methods for short-term load forecasting [97]. However, only two 24-hour forecasts were 

shown in this article, and no comparisons with conventional methods were presented. 

Sunandaj Power Network in Kurdistan of Iran was considered as a case study for this 

experiment.   



31 

 

Gradient boosting is a machine learning technique for regression and 

classification [98], which can be used as a prediction model. A set of weak prediction 

models are combined to create a strong prediction model. This technique works well due 

to its strong resistance to overfitting [99]. Taieb et al. [51] used a gradient boosting 

approach for solving a hierarchical load forecasting problem in GEFCom2012 [47]. The 

forecasting problem had 20 zones and 11 weather stations. Non-parametric additive 

models [100] were used for forecasting each zonal load. Temperature effect, calendar 

effect, and lagged demand effect were considered in the forecasting model. Data were 

analyzed for outlier detection and cleaning. 24 hourly models were generated for 

forecasting each hour of the day. This technique ranked fifth among 105 participating 

teams in GEFCom2012. Similar kinds of boosting techniques were applied by Hyndman 

et al. [101] to forecast short term and long term electricity demand for the Australian 

Electric Power System.  

2.2 Probabilistic Forecasts 

This section provides background knowledge of probabilistic forecasting 

methods, which are used to quantify forecast uncertainties in Section 3.2. Probabilistic 

forecasting is a century old problem. The first article on probabilistic forecast was 

published in 1906 by Cooke [102]. It considered uncertainty inherent in weather 

forecasts. A comprehensive discussion of probabilistic forecasting between 1900 and 

1980 considering purpose and use of probability forecasts, procedures, probability 

forecast types, evaluation techniques, and problems was prepared by Hughes (1980) for 
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the U.S. National Weather Service (NWS) [103]. Precipitation was used as the case 

study. Murphy et al. (1984) studied the use of probabilistic forecasts in meteorology 

between 1900 and 1984 [40]. In 1965, precipitation probability was added to all public 

weather forecasts, which was the first practical use of probabilistic forecasts in any field. 

Since then, probabilistic forecasts have been used in other fields such as economics, 

medicine, decision analysis, and risk analysis (earthquake and nuclear power plant) [40]. 

However, probabilistic forecasts have only recently been introduced in the energy sector 

[37].  

Subsection 2.2.1 presents reviews of probabilistic forecasts. Recently published 

probabilistic forecasting methods are reviewed in two subsequent subsections: statistical 

approaches (see subsection 2.2.2) and machine learning approaches (see subsection 

2.2.3).  

2.2.1 Probabilistic Forecasting Review  

Chatfield (1993) reviewed the importance of interval forecasting, which is a 

special case of probabilistic forecasting [104]. In the tutorial section, the author discussed 

several general methods to calculate predictive intervals (PI) such as 1) evaluating the 

variance of forecasting error based on an assumption of normality, 2) fitting a probability 

model, 3) using ARIMA and exponential smoothing methods assuming optimality, 4) 

using “approximate” formulas, 5) calculating empirical error distributions, 6) simulating 

and resampling error distribution, 7) Bayesian approach, and 8) calculating PI from 

transformed variables. The variable transformation technique is applied in one of the 
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methods in this dissertation to generate probabilistic forecasts (see Section 3.4). Chatfield 

updated his review in 2001 [105]. Chatfield published a third review in 2013, in which he 

compared time series forecasting methods, including point and interval forecasts [106]. 

Most of the review was related to recent developments in forecasting methods. 

Tay et al. (2000) surveyed the use of density forecasts (also known as 

probabilistic forecasts) in macroeconomics and finance. Density forecasts of U.S. and UK 

inflation rates were presented as examples. Tay et al. stressed the importance of the 

presentation of density forecasts. A fan chart was shown as an illustration. Presentation of 

the probabilistic forecasts is important to avoid misunderstanding. Assessment techniques 

of density forecasts were discussed briefly. Probabilistic Integral Transform (PIT) is 

mentioned as a graphical tool to measure calibration of the probabilistic forecasts. 

Raftery (2014) took a similar approach to demonstrate the use of probabilistic forecasts in 

different fields of research [107]. This article discussed five successful practical uses of 

probabilistic forecasts. Although the communication of probabilistic forecasts is more 

difficult than the communication of point forecasts, a graphical approach was preferred to 

a tabular format to present probabilistic forecasts in most of the cases. Spiegelhalter et al. 

reported on new ways to visualize forecast uncertainty [108]. In this work, the assessment 

of the probabilistic forecasts is presented in both numerical and graphical ways. 

Zhang et al. (2012) reviewed state-of-the-art methods and recent developments in 

wind power probabilistic forecasts [109]. Wind power uncertainty forecasting was 

classified based on time scale and application: very short-term (seconds to minutes), 

short-term (hours to days), medium-term (days to weeks), and long-term (weeks to 
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months to years). The impact of wind power forecasts on electricity prices was 

demonstrated qualitatively in the supply-demand curve. The uncertainty of wind power 

can be expressed in four ways: a) PDFs and CDFs, b) quantiles and intervals, c) discrete 

probabilities, and d) moments of probability distribution (mean, variance and skewness). 

The authors classified wind power forecasting based on mathematical methods: 

parametric (homoscedastic time-series, heteroscedastic time-series, and artificial 

intelligence), and non-parametric (quantile regression, kernel density estimation, 

ensemble forecasting, and artificial intelligence). In the field of parametric approaches, 

most research has been done in four areas: a) shape assumption of predictive 

distributions, b) estimator of location parameters, c) estimator of scale parameters, and d) 

parameter evaluation theory. Different variants of quantile regression models and kernel 

density estimators were discussed in that paper. Three criteria were mentioned as 

required properties of probabilistic forecasts: a) reliability, b) sharpness, and c) skill 

score. Reliability is defined by the statistical consistency of a predictive distribution. 

Calibration replaces reliability as an important assessing criteria of probabilistic forecasts 

in some articles [110, 111]. Calibration is defined as the statistical compatibility between 

probabilistic forecast and observations. Figure 2.1 provides examples of perfectly reliable 

and well calibrated probabilistic forecast (left), and non-reliable and poorly calibrated 

probabilistic forecast (right), respectively. In this work, a new scoring rule is used, where 

reliability is considered as the most important criteria to assess probabilistic forecasts. 
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Figure 2.1: Reliability of probabilistic forecasts. 

Sharpness denotes the concentration of a predictive distribution. Sharper 

probabilistic forecasts are considered useful and preferable in the GEFCom2014 [112]. 

However, too sharp probabilistic forecasts are not desirable. Figure 2.2 illustrates an 

instance of sharper and less sharp probabilistic forecasts compared with a reference 

probabilistic forecast.  

Skill scores referred to different scoring rules to assess a predictive distribution. A 

proper scoring rule provides the best score by forecasting the true distribution [113]. Thus 

a proper scoring rule is preferable. A list of widely used skill scores such as logarithmic 

score, continuous ranked probability score (CRPS), trick or check loss score, interval 
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score (IS) (also known as Winkler score [114]), and energy score were discussed in that 

article. CRPS is used in this work to assess probabilistic forecasts.  

 

Figure 2.2: Sharpness of probabilistic forecasts. 

Pinson (2013) reviewed probabilistic wind power forecasting as part of 

operational management for the electricity market [115]. Wind power generation was 

shown to be a stochastic process. The author argued the importance of using probabilistic 

forecasts over point forecasts in the energy industry. A Western Denmark dataset was 

used as a case study to illustrate sample probabilistic forecasts and space-time 

trajectories. Probabilistic forecasts were presented in a colorful way similar to the bank of 

England’s fan chart [116]. The author related the operational decision-making problem of 

the power industry with a variant of the well-known linear terminal loss problem, also 

known as the newsvendor problem [117], where probabilistic distributions of demand are 
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required to make optimal decisions [118, 119, 120]. Four future challenges for 

probabilistic forecasts were discussed at the end of this article: (a) improving forecasts by 

extracting more out of the data, (b) new forecasting methods, (c) evaluating probabilistic 

forecasts, and (d) bridging the gap between forecast quality and value. This dissertation 

tries to meet all four challenges mentioned in this literature. 

Weron (2014) reviewed a variety of models (from 801 papers) used in electricity 

price forecasting (EPF) between 1989 and 2013 [121]. The article focused on describing 

the existing solutions of EPF, with special emphasis on the strengths and weaknesses of 

the individual models. The author categorized all reviewed articles into five groups based 

on forecasting methods to find the most popular one: a) multi-agent models (Nash-

Cournot framework, supply function equilibrium, strategic production-cost, agent-based), 

b) fundamental and structural models (parameter rich fundamental, parsimonious 

structural), c) quantitative and stochastic models (jump-diffusions, Markov regime-

switching), d) statistical approaches (similar day, exponential smoothing, regression 

analysis, AR/ARX- type, GARCH-type), and e) machine learning techniques (feed-

forward neural networks, recurrent neural networks, fuzzy neural networks, SVM). 

Historical electricity price datasets were collected from the Nord Pool power market 

(Denmark, Finland, Norway, and Sweden) [122] to illustrate the dynamic changes in 

electricity price over time. Interval forecasts, probabilistic forecasts, and combining 

forecasts were mentioned as the future of EPF beyond point forecasts. Probabilistic 

forecasts were hardly used in EPF. Probabilistic forecast evaluation was mentioned as 

more complicated than point forecast evaluation. A guideline for evaluating forecasts 
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were given at the end of this paper. The new evaluation technique, graphical calibration 

score (GCM), implemented here in this work is motivated by useful guidelines and two 

evaluation criteria (resolution and sharpness) mentioned in this paper.   

Hong et al. (2014) [37] reviewed probabilistic electric load forecasting from two 

perspectives: applications and methods. The authors studied probabilistic forecasting as 

an application for a) generating probabilistic load forecasts considering uncertainties of 

generation outages, changes in network configuration, and load forecasting error, b) 

minimization of unit production cost considering production uncertainty and other 

constraints on the units and the system, and c) reliability planning. Different methods of 

probabilistic forecasting were reviewed in three separate sections: short-term 

(hourly/daily), long-term (monthly/annual), and interval forecasting without probabilistic 

meaning. The article also covered an extensive literature review of short-term point load 

forecasting based on techniques, methods, and significance. In the tutorial section, the 

authors mentioned three different ways to generate probabilistic forecasts with useful 

infographics: a) input data simulation to generate different scenarios, b) model-driven 

probabilistic forecasts, and c) error simulation from point forecasts and ensembles of 

point forecasts. The authors mentioned a lack of well-established evaluation tools as one 

of the main reasons for the under-development of probabilistic forecasts in the energy 

sector. Reliability, sharpness, and resolution were mentioned as the main criteria to 

evaluate probabilistic forecasts. In this work here, a new probabilistic forecast evaluation 

technique is implemented considering above mentioned criteria. The Pinball loss function 

and the Winkler score were discussed as comprehensive metrics for probabilistic 
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forecasts. In this dissertation, the Pinball score is used to assess probabilistic forecasts. 

Eight traditional problems with probabilistic forecasts were identified in that article: a) 

reproducible and comprehensive studies, b) leveraging the point forecasting articles, c) 

scenario generation for probabilistic forecasts, d) error measurement for probabilistic 

forecasts, e) probabilistic forecast combination methods, f) hierarchical probabilistic 

forecasts, g) high performance computing, and h) valuation of probabilistic forecasts 

improvement. Five new problems in the energy industry that have introduced a great deal 

of uncertainty were mentioned in that article: a) climate variability due to global 

warming, b) growing market of electric vehicles, c) wind and solar power generation, d) 

replacing old electric equipment with new energy efficient equipment, and e) dynamic 

electricity price.    

Gneiting et al. (2014) offered an overview of the probabilistic research field by 

providing theory, methods, evaluation metrics, and applications [111]. The importance of 

using probabilistic forecasts in different fields of research were explained using 

illustrative examples such as the Bank of England’s probabilistic inflation rate forecasts 

and Stateline wind energy center’s probabilistic wind speed forecasts. Sharpness and 

calibration were mentioned as the criteria for good probabilistic forecasting. The 

probabilistic integral transform (PIT) was shown as a tool to measure the calibration of 

probabilistic forecasts. A scoring rule should measure both sharpness and calibration. 

Various scoring rules to measure the quality of probabilistic forecasting including 

quadratic score (QS), logarithmic score (LS), Hyvärinen score (HS), David-Sebastiani 

score (DSS), continuous ranked probability score (CRPS), and interval score (IS) were 
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explained and compared in a case study of the Stateline wind speed forecasting. The 

CRPS was mentioned as a proper scoring rule. CRPS is used as one of the scoring rules 

to assess probabilistic forecasts for this dissertation. The importance of ensemble 

forecasts in different applications has been increased recently. Two state-of-the-art 

statistical methods, nonhomogeneous regression (NR) and Bayesian model averaging 

(BMA), were applied to generate 24-hour ahead probabilistic weather (temperature, wind 

speed, and precipitation) forecasts for Frankfurt, Germany. No evaluation technique was 

applied to assess the probabilistic forecasts. 

Rossi (2015) discussed the usefulness of employing density forecasts (also known 

as probabilistic forecasts) in economics forecasting and policymaking [123]. Recent 

development in density forecasts were reviewed. A rolling estimation scheme for 

producing forecasts was presented. A density forecast of the U.S. real gross domestic 

product (GDP) growth during the financial crisis (2008) was demonstrated using various 

visual presentations, including a fan chart. Available evaluation techniques for measuring 

the quality of density forecasts were studied in that article. The performance of a U.S. 

real GDP growth density forecast was measured using probability integral transforms 

(PIT). PIT was introduced by Diebold et al. in 1998 [124].      

In 2014, the IEEE Power and Energy Society sponsored a global energy 

forecasting competition (GEFCom2014) on the probabilistic forecasting theme to identify 

the best probabilistic forecasting methods in four tracks: load forecasting, price 

forecasting, wind forecasting, and solar forecasting. Hong et al. (2016) [112]  gave an 

overview of the GEFCom2014 and summarized the top five winning strategies from each 
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track. The pinball loss function was used as a scoring rule to measure the performance of 

all forecasts submitted for this competition. The pinball loss function is used in this 

dissertation to assess proposed probabilistic forecasting methods. In both electricity and 

price forecasting tracks, the winning team used generalized additive models with quantile 

regression [125]. The most useful part of that paper is the table containing different 

techniques used by different teams for each track. All datasets used for this competition 

were made publicly available. 

Similar to point forecasting methods, probabilistic forecasting methods are 

discussed in two sections. The next subsections review statistical and machine learning 

methods for generating probabilistic forecasts. 

2.2.2 Statistical Methods for Producing Probabilistic Forecasts 

Although it is possible to trace back probabilistic forecasting articles more than 

one hundred years [102], the use of probabilistic forecasts in the energy sector is new 

compared other areas of research such as meteorology, economics, and finance. Most of 

the development of probabilistic forecasts in the energy sector has been done within the 

last five years [37]. In 1992, the Electric Power Research Institute (EPRI) arranged an 

energy forecasting competition to develop a better one day-ahead hourly energy 

forecasting model than the existing model for Puget Sound Power and Light Company 

(PSE) [126]. Eleven participating teams were asked to generate probabilistic forecasts 

based on eight years (1983-1990) of historical hourly electricity usage and actual 

temperatures provided by PSE. This contest is the first documented use of probabilistic 
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forecasts in the energy industry. The Quantitative Economic Research Inc. (QUERI) 

prepared a report in 1993 on behalf of EPRI for PSE. Their report documented the 

forecasting competition and the selected probabilistic method for forecasting hourly loads 

for PSE [127]. The winning method used an ordinary least squared (OLS) method to 

analyze historical errors. Through investigation, QUERI found that using hourly models 

provide improved forecasts compared to a single model for every hour. Thus, 48 hourly 

models (24 for weekdays and 24 for weekends) were used. Probabilistic forecasts were 

indicated as a better option than point forecasts for decision making in the energy 

industry. The QUERI report has special importance to understand how forecasts are used 

in the U.S. electricity industry for daily decision making because of the direct 

involvement of the oldest U.S. utility, PSE (established in 1873 [126]).  

  Hong et al. proposed a scenario-based long-term probabilistic load forecasting 

(LTLF) model [128]. Based on 30 years of hourly weather information and three forecast 

macroeconomic scenarios (base, aggressive, and conservative) for one year, they have 

generated 90 cross scenarios. The authors used the electric load of North Carolina 

Electric Membership Corporation (NCEMC) as a case study to generate one year ahead 

probabilistic load forecasts based on different scenarios. Four MLR models, similar to the 

MLR benchmark model of Hong’s Ph.D. dissertation [45], were used to generate 

temperature scenario based forecasts (implemented in SAS [129]). The performance of 

the probabilistic forecasts was not evaluated.  

Xie et al. simulated forecast residuals to generate long term probabilistic load 

forecasts based on an assumption of normality [130]. The Kolmogorov–Smirnov 
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normality test was used to check normality. Weather scenarios were generated from 

historical weather data [128]. Three linear models were used to generate point forecasts 

based on different weather scenarios. Then probabilistic forecasts were calculated from a 

set of point forecasts. Two case studies (NCEMC and the GEFCom2014 dataset [112]) 

were used to produce probabilistic forecasts.  The performance of the probabilistic 

forecasts was evaluated by the pinball loss function. The normality assumption should be 

avoided in practice because the error distribution typically is not normal. Similar 

techniques as in [128, 130] (temperature scenario generation from historical weather 

data) were adopted by Xie et al. to produce probabilistic forecasts in the GEFCom2014 

electricity forecasting track [131]. Data were pre-processed in two steps: a) weather 

station selection [54] and b) data cleaning. 

Pierrot et al. (2011) applied a semi-parametric method using Generalized Additive 

Models (GAM) to forecast short-term electricity load for a French electricity company, 

Electricité De France (EDF) [132]. GAMs are regression models that use smoothing 

splines instead of linear coefficients. GAMs are very effective in capturing non-linear 

effects [133]. The electricity demand reduced significantly during the summer break in 

EDF, which was well captured by the GAM. The model was fitted such that the 

Generalized Cross Validation (GCV) score (lower score is better, included in the GAM 

package of R [134]) is minimized, leading to nearly normal forecasting errors. The 

overall performance of this method was competitive with the existing EDF operational 

model. However, utilities are often more concerned about special days rather than overall 
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performance of a model. Thus, this dissertation calculates the performance of 

probabilistic forecasting methods on usual days [135].  

Wood et al. applied the same model (GAM) on larger dataset (five years of half-

hourly electricity demand) collected from the same French utility, EDF, to forecast 

electricity demand [136]. The main goal of this experiment was to show GAM working 

for a larger dataset. A similar approach (using GAM) was used by Fan and Hyndman to 

forecast half-hourly load for seven days [137] and long-term peak electricity [138] for 

South Australia, respectively.  Australian Energy Market Operators (AEMO) have used a 

short-term load forecasting model to forecast half-hourly load for Victoria and South 

Australia. For the long term density forecasts, 2000 years of temperature scenarios were 

generated from simulation to generate probability distributions of weekly and yearly peak 

load. The authors assert good performance of the probabilistic forecasts without 

comparing or scoring the forecast using any proper scoring rule.  Dordonnat et al. used a 

semi-parametric regression model similar to [132] in the GEFCom2014 probabilistic load 

forecasting track [139]. They have selected three weather stations among given twenty-

five based on the lowest GCV score. Temperature scenarios were generated by 

simulating different paths between normal temperature (moving average) and an AR 

model. Probabilistic forecasts were produced from 1000 simulated temperature scenarios 

using a GAM model. Forecast performance was evaluated using the pinball loss function 

according to the competition rules. The proposed method ranked among the top five 

methods in the load forecasting track (as team ADADA) of GEFCom2014 [112].     
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Combinations of point forecasts provide better forecasts than individual point 

forecasts [140, 141, 142, 143, 144]. However, ensembles of probabilistic forecasts have 

not been explored [37]. Quantile regression (QR) [145, 146, 147, 148, 149, 150], which 

measures the conditional distribution of the dependent variable given explanatory 

variables, was used recently in the energy sector to generate probabilistic forecasts from 

several point forecasts. Nowotarski et al. examined the idea of combining forecasts to 

generate a day-ahead electricity spot price probabilistic forecast using quantile regression 

averaging (QRA) [151]. The Jersey Central Power and Light Company (JCPL) of the 

Pennsylvania-New Jersy-Maryland (PJM) interconnection was used as a case study for 

this paper. The QRA method combined twelve individual point electricity price forecasts 

to generate 50% and 90% interval forecasts. The authors have shown better forecasting 

performance of the QRA method by comparing with individual points forecasts. Liu et al. 

proposed a similar idea to generate probabilistic electricity load forecasts by combining a 

set of sister models through quantile regression averaging (QRA) [152]. Publicly 

available data from GEFCom2014 was used to show the effectiveness of this method. 

The main dataset was divided into eight non-equal parts to create eight different training 

datasets, and the forecasting models generated from those individual datasets were called 

sister models. The pinball loss function [153] and Winkler scores [114] were used to 

assess the probabilistic forecasts. The authors compared the combined probabilistic 

forecast result with individual model forecasts, where the QRA outperformed all 

individual model forecasts.  
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Team Poland, which finished second in the GEFCom2014 probabilistic electricity 

spot price forecasting track [112], applied a similar strategy of combining point forecasts 

using QRA [151]. Twenty-four separate models were constructed to capture the pattern 

of different hours of the day. Maciejowska et al. explained Team Poland’s electricity 

price forecasting strategy in [154]. The same authors extended the QRA method by using 

principal component analysis (PCA) to select point forecasting models automatically 

from a set of 32 individual forecasting models, which was called Factor Quantile 

Regression Averaging (FQRA) [155]. Data collected from the British power market were 

used to generate 24-hour ahead probabilistic electricity load and price forecasts to show 

the effectiveness of this method. The forecasting performance of FQRA, QRA, and an 

individual AR-type model (used as a benchmark) were compared using a Winkler score. 

The FQRA outperformed other two methods most of the time. 

Gaillard et al. proposed a method based on GAM and quantile regression (QR), 

called quantGAM, to forecast electricity load and price, which ranked first (as team 

Tololo) in both the load and the price forecasting tracks of GEFCom2014 [156]. GCV 

score was used to select the top four weather stations from twenty-five weather stations. 

800 randomly generated temperature scenarios were fed into GAM to generate scenario-

based point load forecasts. Point forecasts were used as inputs to QR to generate 

probabilistic load forecasts. In the electricity price forecasting track, two other 

probabilistic forecasting methods were proposed and compared with quantGAM. The 

first method was based on the idea of combining individual predictors such as AR-type 

models, linear regressions, GAM, random forests regressions, and gradient boosting 
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machines using QRA, similar to [151].  The second method was kernel-based QR with 

lasso penalty for covariate selection, denoted as quantGLM. Haben et al. used kernel 

density estimation (KDE) and QR in the load forecasting track of GEFCom2014 [157], 

similar to the third model mentioned by team Totolo in the price forecasting track. They 

did not consider any kind of preprocessing approach like other winning teams, such as 

data cleaning, weather station optimization, and temperature scenario generation.  

Jeon et al. proposed two statistical methods, ARMA-GARCH and conditional 

kernel density estimation (KDE) to produce 24-hour ahead probabilistic wave energy 

forecasts [158]. Three types of data transformation methods, log, square root, and Box-

Cox transformations, were used to convert data into a normal distribution and compared 

with a no data transformation technique using CRPS. Log, and Box-Cox transformation 

methods produce the best score. Datasets for this experiment were collected from the 

FINO1 research platform located in the North Sea near Germany [159]. An illustrative 

comparison between regression methods, AMRA-GARCH models, and conditional 

kernel density estimation (KDE) have been shown. PIT histograms were used to 

demonstrate the calibration of the probabilistic forecasts.  

Mangalova et al. used a nonparametric approach based on the Nadaraya-Watson 

estimator for short term probabilistic load forecasting, which ranked fifth in 

GEFCom2014 [160]. This method does not require any assumption about the probability 

distribution. The authors further modified the transformation process of quantiles after 

the competition, which led to better probabilistic forecasts than those submitted to 

GEFCom2014. 
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Ziel et al. presented a method based on lasso (least absolute shrinkage and 

selection operator) estimator [161] for short term probabilistic load forecasting [162]. The 

proposed method was applied on two publicly available datasets (GEFCom2014-L and 

GEFCom2014-E) [112] and compared with two benchmarks [49, 50]. The pinball score 

was used for evaluating probabilistic forecasts. Lasso estimator performed better than 

four benchmark models based on pinball score. The pinball score is used in this 

dissertation to evaluate probabilistic forecasts. 

Most of the probabilistic forecasting methods are statistical. However, there are a 

few articles that use machine learning approaches with statistical methods. The next 

subsection presents machine learning approaches for generating probabilistic forecasts 

such as gradient boosting machines, ANN, k-NN clustering, radial basis function (RBF), 

support vector machine (SVM), particle swarm optimization (PSO), and decision trees.   

2.2.3 Machine Learning Methods for Producing Probabilistic Forecasts 

Taieb et al. proposed 24-hour ahead 50% and 90% load prediction intervals from 

high frequency smart meter data using a boosting technique with additive quantile 

regression [163]. Regression trees, smoothing splines, and penalized regression splines 

(P-spline) were used as base learners in the boosting algorithm. This method was 

compared to three benchmark models for both aggregated and disaggregated scales. The 

continuous ranked probability score (CRPS) [113] was used as a scoring rule for the 

comparison.  
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Similar machine learning approaches such as gradient boosting machines (GBM) 

with a quantile loss function have been used by Landry et al. for short term probabilistic 

wind power forecasting [164]. Standard smoothing techniques and a cross-sectional 

approach were applied to adapt with forecast inaccuracies. The pinball loss function was 

used to measure the performance of their probabilistic forecasts. Their proposed method 

secured the top position in the GEFCom2014 wind forecasting track. However, the 

distribution of probabilistic forecasts was concentrated near the 40th quantile (more than 

60% of observations were between the 20th and 50th quantiles, and less than 10% of 

observations were between the 60th and 99th quantiles), which indicates that the proposed 

method did not capture the true distribution. Forecasts are more effective if they can 

perform reasonably during extreme conditions (tail of the distribution). Less than 1% of 

observations between the 70th and 99th quantiles proved the weakness of this method to 

produce credible forecasts during extreme conditions. Still, the probabilistic forecast 

generated by this method scored well using the pinball loss function, which raises 

questions about the credibility of the scoring rule used in GEFCom2014. This dissertation 

proposes two new scoring rules, which assign a better score if the empirical distribution 

matches with expected distribution and penalize heavily for being extra sharp or less 

sharp. 

 Nagy et al. investigated short-term probabilistic solar and wind power forecasting 

using two machine learning techniques, voted ensemble of quantile regression forecasts 

(QRF) and stacked random forecasts – gradient boosting decision tree (GBDT) [165]. 

The probabilistic forecasts obtained from the above methods were post-processed by 
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isotonic regression to maintain the monotonic-increase attribution of probability 

distributions. This approach ranked second in both wind and solar forecasting tracks of 

GEFCom2014 [112]. 

Juban et al. used a multiple quantile regression approach to predict probabilistic 

wind, solar, and electricity price in GEFCom2014 [166]. The proposed method used a 

radial basis function (RBF) to capture the non-linear dependencies on the input data, and 

a k-means clustering algorithm was used to compute the center of a RBF. The alternative 

direction method of multiplication (ADMM) was used for solving the optimization 

problem resulting from multiple quantile regression. This method performed in the top 

five of GEFCom2014 wind, solar, and electricity price forecasting tracks. 

Quan et al. developed a particle swarm optimization (PSO) based ANN model for 

quantifying uncertainties associated with load forecasts, called LUBE (lower upper 

bound estimate) [167]. Historical load data collected from Singapore, Ottawa (Canada), 

and Texas (USA) were used as case studies to demonstrate 168 hours (1 week) ahead 

probabilistic load forecasts. The proposed method was compared with three benchmark 

models (ARIMA, ES, and naïve model, which is similar to the point forecasts). Four 

evaluation metrics including three predictive interval (PI) width assessment indices and 

the Winkler score [114] were used to measure the performance of probabilistic forecasts. 

Their proposed method is compared to three benchmarks. The ANN also used by Dudek 

for short term probabilistic forecasting ranked third in the GEFCom2014 wind power 

forecasting track [168]. The author has shown a high correlation between electricity price 

and recent load demand. Thus, the proposed method only considered recent load demand. 
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One of the weaknesses of this method is the normality assumption of the error 

distribution, which is one of the easiest ways to generate probabilistic forecasts but is not 

practical. In that work, a benchmark model is created based on normality assumption to 

demonstrate why this approach should be avoided.  

Zhang et al. used k-Nearest Neighbor (k-NN) and a kernel density estimator 

(KDE) for short-term solar power forecasting [169]. First, a k-NN algorithm was used to 

group days with similar weather conditions. Then, the KDE was applied to produce 

probabilistic forecasts for each of the groups created by k-NN. The authors used this 

method on the GEFCom2014-S dataset [112] to demonstrate its effectiveness. The 

performance of this method has been tested using the pinball loss score. However, the 

result was not compared with any benchmark method. Similar approaches to find the 

probabilistic distribution ranked fifth in the GEFCom2014 wind power forecasting track 

[170]. A k-NN algorithm was used also by another two teams in GEFCom2014. In the 

probabilistic wind power forecasting track, Mangalova et al. defined wind speed as a 

distance metric for the k-NN algorithm, and then linearly interpolated each quantile to 

calculate quantile estimation [171]. That method ranked third in the wind power 

forecasting track. 

Huang et al. applied gradient boosting to find point forecasts, and then k-NN 

regression was used to generate probabilistic forecasts by finding similar scenarios from 

the historical data [172]. This method ranked first in the solar power forecasting track.   
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2.3 Probabilistic Forecast Evaluation Techniques 

One of the major contributions of this dissertation is providing a new way to 

assess probabilistic forecasts. Some of the existing evaluation techniques are used in the 

dissertation to assess probabilistic forecasting methods described in Section 3.2. Thus, 

this section focuses on providing enough background information of existing evaluation 

techniques from different fields of research.  

Measuring forecast performance is important to identify weak points of a model, 

which leads to improved forecasting models. Different types of evaluation techniques 

used to assess point forecasts were reviewed by Hyndman et al. in [173]. Among all 

available evaluation techniques, mean absolute percentage error (MAPE) and mean 

absolute error (MAE) are widely used by the research community for assessing the 

quality of point forecasts. However, there is no unique popular evaluation technique 

available for evaluating probabilistic forecasts, which is considered as one of the main 

reasons for the slow progress of probabilistic forecasting research [37]. A good 

probabilistic forecast aims to maximize the sharpness of its predictive distribution, 

subject to calibration [174]. Reliability and resolution are important criteria [37, 175]. 

Gneiting et al. reviewed some of the well-known evaluation techniques to evaluate 

probabilistic forecasts in [111]: quadratic score (QS), logarithmic score (LS), Hyvärinen 

score (HS), David-Sebastiani score (DSS), continuous ranked probability score (CRPS), 

and interval score (IS). The rest of the chapter provides an overview of some well-known 

probabilistic forecast evaluation techniques.       
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In 1950, Brier proposed an evaluation technique to evaluate probabilistic rain 

forecasts [176]. The Brier score or probability score (PS) is considered the earliest 

attempt to score a probabilistic forecast [103].  

Murphy presented a vector partition for the PS, which consists of three terms: a) a 

measure of uncertainty, b) a measure of reliability, and c) a measure of resolution [177]. 

Several versions of PS were studied by Murphy, including skill score (SS) [178], 

collective skill score (CSS) [179], and sample skill score (SSS) [180].  Hernandez et al. 

presented a graphical version of PS, called the Brier curve or the receiver operating 

characteristic (ROC) curve [181, 182]. PS is considered as one of the best scoring rules to 

evaluate probabilistic forecasts by most meteorologists [183].  

A weighted version of PS, called ranked probability score (RPS), performs better 

than PS for evaluating distance-sensitive probability distributions such as temperature 

forecasts [183]. However, PS or RPS is not suitable for evaluating continuous probability 

distributions. Gneiting et al. proposed a continuous version of PS/RPS, continuous ranked 

probability score (CRPS). CRPS is credible to measure calibration and sharpness of a 

probability distribution [110]. The CRPS has been shown to be a proper scoring rule in 

[113]. If 𝑛 is the number of forecasts, 𝐹௜
௙(𝑥) denotes the forecasted cumulative 

distribution function (CDF), and 𝐹௜
଴(𝑥) represents observed value, then  
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A lower CRPS score is considered better. This evaluation technique has been used 

for evaluating probabilistic forecasts in [107, 111, 158, 163]. This technique yields a 

better score for sharper but low calibrated probability distributions compared with less 

sharp but well calibrated probability distributions. However, calibration should be given 

more importance than sharpness for evaluating probabilistic forecasts, because it 

penalizes too sharp probabilistic forecasts. Two scoring rules, quantile calibration score 

(QCS), and percentage quantile calibration score (PQCS), providing calibration as the 

highest priority are defined in Section 3.5.  

Diebold et al. proposed an evaluation technique to measure calibration of 

probability distribution called the probability integral transform (PIT), which is well 

accepted by most of the economics literature [124]. This technique provides a visual 

representation of calibration. If the PIT looks like a uniform distribution, the density 

forecast is well calibrated. This evaluation technique has been adopted (especially in the 

financial sector) as a probabilistic forecast measuring tool [111, 123, 124, 158, 163, 110, 

184, 185]. One problem with this evaluation technique is not providing any numerical 

score, which is not helpful to compare two very closely related probability distributions. 

The new evaluation technique, graphical calibration measure (GCM), presented in 

Section 3.5 has both graphical and numerical representations. 

Different kinds of loss functions, which can be used to evaluate probabilistic 

forecasts including linlin, hinge, tick, pinball, and newsvendor loss, were studied by 

Gneiting in [120]. Recently, the pinball loss function [153] and the Winkler score [114] 

have been used by several articles to evaluate probabilistic forecasts [130, 152, 163, 167]. 
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Pinball and Winkler scores can measure reliability and sharpness of probabilistic 

forecasts [37]. Both of them are proper scoring rules. The pinball loss function has been 

selected as an official scoring rule in a major global forecasting competition, 

GEFCom2014 because of its simplicity [112].  

If 𝑞 represents forecast quantiles (for example: 0.01, 0.02, … , 0.99),  𝑦௧ is the 

actual flow at time 𝑡, and 𝑦ො௧,௤ denotes forecasted flow for quantile 𝑞 at time 𝑡, the pinball 

score for an individual quantile is  
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If 𝐿௧ and 𝑈௧ represent lower and upper bounds of a predictive interval at time 𝑡 
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(2.3)  

For both pinball and Winkler scores, lower scores are better. Both scoring rules 

give more importance to sharpness than calibration (sharp forecast with low calibration 

always achieve better scores than less sharp with well calibrated forecast), which should 

be opposite in practice [164].   
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Other evaluation techniques such as the Kolmogorov-Smirnov (KS), the Cramér–

von Mises test statistic [186], and Monte Carlo simulation [187] have been applied to 

assess probabilistic forecasts. However, use of these tests are limited.  

This chapter presented a literature review on two different ways of forecasting: 

point forecasting and probabilistic forecasting. Highly cited literature surveys were 

included at the beginning of this chapter to cover most of the historically important 

forecasting methods concisely. Recent articles were discussed in two sections: statistical 

approaches and machine learning approaches. A short review of existing evaluation 

techniques for assessing forecasts was included at the end of this chapter. The next 

chapter of this dissertation presents a point forecasting method, three probabilistic 

forecasting methods (including a benchmark), and an evaluation technique to assess 

probabilistic forecasts.   
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PROBABILISTIC FORECASTING METHODS AND EVALUATION 
TECHNIQUES 

This chapter presents the two major contributions of this dissertation: a fast and 

efficient way to quantify forecast uncertainty using the Johnson curve [188] and a new 

evaluation technique to assess probabilistic forecasts. The point forecasting method used 

for generating probabilistic forecasts also is presented. A benchmark probabilistic 

forecasting model was created based on a normality assumption, as explained in Section 

3.2. A newly developed unpublished probabilistic forecasting engine using a kernel 

density estimator (KDE) is introduced in this chapter [189]. Three variants of the Johnson 

curve and KDE based probabilistic forecasting methods are presented in Sections 3.3 and 

3.4, respectively. This chapter ends with a new evaluation technique, graphical 

calibration measure (GCM) to assess probabilistic forecasts. Associated with GCM are 

two new scoring rules, quantile calibration score (QCS) and percentage quantile 

calibration score (PQCS).  

3.1 Point Forecast Using Multiple Linear Regression 

This dissertation generates probabilistic forecasts through error analysis of point 

forecasts. A linear regression is used to generate point forecasts from weather inputs, 

seasonal effects, and historical load demand. This section describes the point forecasting 

method used to generate the probabilistic forecasts. However, the probabilistic 
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forecasting methods presented in this dissertation will work with any point forecasting 

method, this one is only intended as an example. 

 

Figure 3.1: Electricity load vs. weather inputs. 

The linear regression model used in this dissertation is based on Siddique’s work, 

MLR1 [46], and Deoras’ work, MLR2 [78]. The final linear regression model considers 

an hourly holiday effect (8 A.M. to 4 P.M.) and lag terms (1-3, 23-25, and 167-169 

hours). Energy demand is highly related to weather inputs such as temperature, wind 

speed, and dew point (see Figure 3.1). Therefore, these three weather inputs are used in 

the implemented multiple linear regression point forecasting method, MLR3. Sine and 

cosine terms of the day of the week and the day of the year are considered as input factors 

of the MLR3 model to capture weekly (see Figure 3.2) and yearly cycles (seasonality), 

respectively. Table 3.1 compares the factors of the MLR3 method with the initial two LR 

methods, MLR1 [46] and MLR2 [78]. In principle, any other point forecasting method 

could be used. 
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Figure 3.2: Weekly energy load patterns. 

Table 3.1: Comparison of point forecasting model factors. 

 MLR1 [46] MLR2 [78] MLR3 (new) 
Weather 
inputs 

Temperature          
Wind speed              
Dew point 
Precipitation 

Temperature               
Dry Bulb                     
Dew point 

Temperature           
Wind speed               
Dew point 

Seasonality Hour                  
Weekday                   
Day of the year 

Hour                   
Weekday              
Holiday (12AM -11PM) 

Hour                    
Weekday              
Holiday (8AM – 6PM) 
Day of the year 

Historical 
load 

1, 2, 4, 8, 12, 24, 
48, 72, and 168 
hours ago. 

1, 24, and 168 hours 
ago.  

1-3, 23-25, and 167-
169 hours ago. 

Historical 
weather 

1, 2, 4, 8, 12, 24, 
48, 72, and 168 
hours ago. 

None. 1 and 2 hours ago. 

 

L
o

a
d 

(s
ca

le
d

)



60 

 

Denoting temperature as T, wind speed as WS, dew point as DP, load (flow) as Y, 

day of the year as DOY, day of the week as DOW, and hour of the day as HOD, the 

MLR3 method is 

kY


   2

2

0
1

4* * *k i k i k ii i i
i

T S DPW      


      

 
3

22 166
1

6 9 12* * *i ik k ii i k i
i

Y Y Y        


    

2

14 2 15 2
1

sin 2 * cos 2 *
365 365

* *i i
i

DOY DOY
i i    



         
    



2

18 2 19 2
1

sin 2 * co* * s 2 *
7 7i i

i

DOW DOW
i i    



         
    



2

22 2 23 2
1

sin 2 * co* * s 2 *
24 24i i

i

HOD HOD
i i    



         
    

 . 

(3.1)  

The MLR3 model is used to generate point forecasts for all three probabilistic 

forecasting methods described in the next section: a) a benchmark model based on a 

normality assumption (NDEPF), b) kernel density estimation based probabilistic forecasts 

(KDEPF), and c) probabilistic forecasts using data transformation by a Johnson curve 

(JDTPF). Each of these methods has three variants.  
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3.2 Probabilistic Forecasts using a Normality Assumption - A Benchmark 

This section presents the first of three probabilistic forecasting methods presented 

in this dissertation, the normal density estimator probabilistic forecasting (NDEPF) 

method. The NDEPF method assumes that the forecasting error is normal, although the 

forecasting error distribution is typically not normal in practice (see Figure 3.3). Many 

probabilistic forecasting articles discussed in Section 2.2 assume normality of the error 

distribution to calculate probabilistic forecasts. Moreover, Tom Connery and Tyler 

Stephens in their natural gas industry overview talk in GasDayTM [2] mentioned the use 

of a normal distribution to quantify forecast uncertainty as a temporary solution of their 

problem (see Section 1.1) because of the easy calculation process. Thus, the probabilistic 

forecasts assuming normality, NDEPF is considered as a benchmark model in this 

dissertation.  

The MLR3 method presented in Section 3.1 is used to generate point forecasts 

from historical weather and energy demand. Then, hourly historical forecasting residuals 

(𝑟) are calculated from actual energy demand (𝑌) and point forecasts ( 𝑌෠  ), 

 
r Y Y



  . (3.2)  
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Figure 3.3: A sample error distribution from real data. 

Now, residuals are sorted by conditionals to make several small groups of 

residuals. Three conditionals have been used in this work: 1) temperature (T), 2) last 24-

hour temperature difference  

 
24k k kT T T    , (3.3)  

and 3) difference between current temperature and last 168 hours (1 week) average 

temperature 

 1

169

168

k

i
i k

k kwk

T
T T



   


. 

(3.4)  
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Finally, residuals are divided into small subsets called residual bins based on one 

of the three conditionals. Other conditionals, such as heating degree day (HDD), cooling 

degree day (CDD), or multiple conditionals could be used (see Section 5.3). The flow 

chart of the residual binning process of the NDEPF method is shown in Figure 3.5. Each 

residual bin must contain enough residuals to create an error distribution. Thus, a 

minimum bin size (number of residuals) is enforced. Intentional overlapping of 20 

percent residuals between two consecutive residual bins avoids discontinuities (see 

Figure 3.8). Each residual bin has three properties: a) start and end index, which represent 

the range of the conditional, b) number of residual samples, and c) a residual cumulative 

distribution function (CDF). In this method, residual CDFs are estimated using a 

parametric approach - normal distribution. Figure 3.4 shows the overall view of 

generating probabilistic forecasts for the NDEPF method. Here, the first flow chart 

(Figure 3.5) is analogous to training, and the second flow chart (Figure 3.7) is similar to 

evaluation.  

 

Figure 3.4: Overview of the probabilistic benchmark method flowcharts. 
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Set first bin start interval, BIN_ST_INT ←

Start

Calculate residuals,                     . 

Sort residuals by conditionals.

Calculate estimated number of bins, EST_N_BINS ← floor(N_SAMPLES/MIN_BIN_SIZE)
Calculate bin size, BIN_SIZE ← floor(N_SAMPLES/EST_N_BINS)
Overlapping sample size, OVERLAP_SIZE ← floor(BIN_SIZE/5)

N_SAMPLES>MIN_BIN_SIZE

Set minimum bin size, MIN_BIN_SIZE
Total number of samples, N_SAMPLES

Historical actual flows,  . 
Historical point forecasts,  .

Historical conditionals, COND

Y
Ŷ

ˆr Y Y 

Estimate current bin end index, EST_BIN_END_INDX ← min (BIN_SIZE,N,SAMPLE)
Set bin end interval, BIN_END_INT ← COND(EST_BIN_END_IND+1)



NO

YES

Set next bin start interval smaller than current bin end interval to ensure 
overlapping, BIN_ST_INT ←  BIN_END_INT- OVERLAP_SIZE

Remove copied residuals from the residual list. 
New total number of samples, N_SAMPLES ← N_SAMPLES – EST_BIN_END_INDX

Fit residuals from current bin with normal distribution to create a residual CDF.

END 
BINNING 
PROCESS

Set last bin end interval, 
BIN_END_INT ← 

Copy first EST_BIN_END_INDX residuals from residual list to current bin.

 

Figure 3.5: Flow chart of residual binning process assuming normality (a benchmark). 
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The normal distribution [190] has some unique properties, which make it possible 

to calculate the entire distribution by knowing only its mean (𝜇) and standard deviation 

(𝜎). The normal probability distribution function (PDF) is 

 
 

 2
22

1
| ,

2

r

f r e


 
 

 


. 

(3.5)  

If the error distribution fits a normal distribution, 68% of the data are within one standard 

deviation of the mean, 95% of the data are within two standard deviations, and 99.7% of 

the data are within three standard deviations of the mean [191]. If r is a data point 

(residual) in a normal distribution, it can be converted into a standard score (z-score),  

 r
z






. 

(3.6)  

The z-score is easily convertible to a percentile (1% to 99%) from an inverse CDF using 

the property of normal distributions shown in Figure 3.6 (see also standard statistical 

textbooks such as [192, 193, 194] for more details). This process is repeated for each of 

the residual bins to get percentiles from inverse residual CDFs for the NDEPF method. 
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  2  3  2 3 

 

Figure 3.6: A sample normal distribution curve. 

Once the residual CDFs are made within each residual bin, the probabilistic 

forecasting engine is ready to generate a probabilistic forecast. A new probabilistic 

forecast is made based on a point forecast and forecasted conditional. The forecasted 

conditional is used to select a residual bin, whose residual CDF is retrieved. Then a point 

forecast is added to each quantile (1% to 99%) of the residual CDF to generate a 

probabilistic forecast. The mean of the probabilistic forecasts (forecasted CDF) has 

shifted (mean = point forecast +  ) from the residual CDF mean (  ), the variance ( ) 

does not change. Figure 3.7 shows the flow chart of generating a probabilistic forecasting 

from an existing point forecast, forecasted conditional, and residual bins. 
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Ŷ

Ŷ

 

Figure 3.7: Flow chart of generating probabilistic forecasts. 

An illustrative example of the binning process is shown in Figure 3.8. Here, 

temperatures (in Fahrenheit) are considered as the conditionals. Suppose, only 13 

samples were available in our cartoon training dataset (see Figure 3.8). In practice, there 

are far more than 13 samples in a training dataset. For example, the experimental result 

presented in Chapter 4 contains approximately 43,800 samples (5 years of hourly data) in 

the training dataset. Residuals are calculated from point forecasts using Equation (3.2). 
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Then, the training dataset is sorted by temperature as shown in Figure 3.8. The residual 

bins are created and populated with residuals according to the flow chart of Figure 3.5. In 

the Figure 3.8 scenario, there are only three residual bins. However, more than 20 bins 

are created when the algorithm is used on a real dataset. Similarly, more than one sample 

is shared in consecutive residual bins. Then, residual CDFs are constructed applying a 

normal fit on all residual samples within each residual bin.  

Temperatures Residuals

75 -5

45 6

60 10

83 3

90 15

55 4

35 3

10 7

-5 2

-12 6

30 -9

46 -3

15 6

Temperatures Residuals

-12 6

-5 2

10 7

15 6

30 -9

35 3

45 6

46 -3

55 4

60 10

75 -5

83 3

90 15

Cartoon historical  data…

After sorting

by temperature

Bin 1

Bin 2

Bin 3

Start: -Inf
End: 35

Start: 30
End: 60

Start: 55
End: +Inf

 

Figure 3.8: An example of the binning process using a cartoon dataset. 

Now, the residual bins are ready to use for generating probabilistic forecasts. The 

real testing datasets (used for the experiment in Chapter 4) contain 17,520 samples (2 

years of hourly data). However, only three samples are shown in the cartoon testing 

dataset (see Figure 3.9). Consider, the first row of the cartoon testing dataset, which 

contains a forecasted conditional (32°F) and a point forecast (650 units). The forecasted 

temperature, 32°F (conditional), is used to find the correct residual bins. A conditional 
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may fit with two consecutive residual bins because of overlapping 20 percent of the 

residuals between two consecutive bins. In this case, the first (range: -Inf to 35°F) and 

second (range: 30°F to 60°F) residual bins are the desired residual bins, because 32°F fits 

between the range of these two overlapping bins. The final residual CDF is the weighted 

combination of these two residual CDFs as shown in the inset of Figure 3.9. Finally, the 

mean of the resultant residual CDF is shifted by the point forecast (i.e., adding point 

forecast with each of the 99 quantiles of the residual CDF) to generate a probabilistic 

forecast for the given temperature (conditional). This entire process is repeated for each 

time horizon. 

Bin 2

Start: 30
End: 60

Bin 3

Start: 55
End: +Inf

Bin 1

Start: -Inf
End: 35

Cartoon forecasts …
Temperature Point forecast

32 650

50 700

67 780

32          |          650

Probabilistic forecast (CDF) = Point forecast + Residual CDF

35 32
wt1 0.6

35 30
32 30

wt2 0.4 1 wt1
35 30

CDF = wt1 CDF1 + w2 CDF2


 




   

 

32

3530 55 + Inf- Inf 60

0.6

0.4

 

Figure 3.9: An example of generating probabilistic forecasts from cartoon forecasts. 

Other possible conditionals include the last 24 hours temperature difference (see 

Equation (3.3)) and the difference between the current temperature and the last 168 hours 
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average temperature (see Equation (3.4)). Probabilistic forecasts generated by both of 

these conditionals are comparable with the temperature conditional (see Chapter 4). 

Multiple conditionals could be used (see Section 5.3).   

The next two sections present two new probabilistic forecasting methods without 

assuming error normality. The first one is based on a non-parametric approach called 

kernel density estimator (KDE). The second one is based on a data transformation 

technique called the Johnson curve [188, 195]. Both KDE probabilistic forecasting 

(KDEPF) method and Johnson data transformation probabilistic forecasting (JDTPF) 

method use the same binning process and probabilistic forecasting engine, respectively, 

as the benchmark probabilistic forecasting method, NDEPF.  

3.3 Probabilistic Forecasts Using a Kernel Density Estimator 

This section presents the second of three major probabilistic forecasting methods, 

kernel density estimator probabilistic forecasting (KDEPF). This method also creates 

residual bins based on conditionals such as 1) temperature, 2) daily temperature 

difference (see Equation (3.3)), or 3) difference between current temperature and last 168 

hour average temperature (see Equation (3.4)) similar to the benchmark method, NDEPF 

(see Figure 3.8). However, the residual CDFs for each of the residual bins are estimated 

using a non-parametric approach, a kernel density estimator (KDE) [196, 197, 198]. 

Figure 3.10 illustrates the flow chart of the residual binning and training CDF process 

using KDE. The residual binning part of the flow chart is similar to the NDEPF binning 
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flow chart, but the training CDF part is different. However, it may be helpful to see the 

entire process at a glance. 

Y
Ŷ



ˆr Y Y 



 

Figure 3.10: Flow chart of the residual binning process using KDE. 
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A kernel distribution is a nonparametric distribution of a random variable. It is 

used when a parametric distribution poorly represents the dataset. In this dissertation, an 

initial attempt to fit forecasting error with known distributions, such as normal, beta, 

gamma, binomial, logistic, exponential, Weibull, and Rayleigh did not work well. Thus, a 

KDE is used to describe forecasting error. If n  is the sample size, (.)K  is the kernel 

smoothing function, and the bandwidth is denoted by h , then the KDE [196, 197] is  
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(3.7)  

 

Figure 3.11: Different smoothing functions in used in KDE (adapted from [196]). 
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Various smoothing functions used in KDE [196, 198] (such as normal (Gaussian), 

Epanechnikov, uniform (box), and, triangle) define the shape of the curve used to 

generate the CDF or PDF (see Figure 3.11). In this work, CDFs are used to represent 

probabilistic forecasts. However, the difference between various smoothing functions are 

more visible as PDFs. Thus, both PDF and CDF are provided for better understanding. 

The normal smoothing function is used in this work. A sample kernel distribution based 

on only six cartoon data samples using a normal smoothing function is shown in Figure 

3.12. Both PDF and CDF version of the graph are provided for better understanding.  

 

Figure 3.12: A sample kernel distribution using cartoon dataset (adapted from [196]). 
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The bandwidth controls the smoothness of the PDF. If it is too small, then it 

generates a rough curve, which provides tiny details of the PDF. On the other hand, if the 

bandwidth is too large, then some important features of the dataset might be obscured. 

Figure 3.13 shows the effect of using different bandwidths on a cartoon dataset 

containing only six samples.  

 

Figure 3.13: Bandwidth selection for KDE (adapted from [196]). 

The default bandwidth in the MATLAB statistics and machine learning toolbox 

estimates a theoretically optimal density function for the normal kernel smoothing 

function, which produces a reasonably smooth curve. In this work, the default bandwidth 

with the normal kernel smoothing function was selected. Figure 3.14 shows a residual 
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CDF and its corresponding PDF generated from a sample residual bin using a real 

dataset.  

Once the residual CDFs are generated from the historical dataset, probabilistic 

forecasts can be generated from point forecasts and forecasted conditionals. The process 

of generating probabilistic forecasts using KDE is similar to the benchmark probabilistic 

forecasting method (NDEPF), explained in the previous section. A flow chart of the 

probabilistic forecasting engine is shown in Figure 3.7. 

 

Figure 3.14: A sample residual CDF and PDF calculated from a residual bin using KDE. 

According to the case studies in Chapter 4, the KDEPF method performed better 

than the benchmark NDEPF method, based on scores provided by all four scoring rules 

(Pinball, CRPS, QCS, and PQCS). However, the KDEPF method requires about 100 

times the CPU time of the benchmark NDEPF (see Section 4.2.4). The next section 

proposes a new faster way (as fast as NDEPF) to calculate residual CDF without the 
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normality assumption, and whose scores (Pinball, CRPS, QCS, and PQCS) are 

comparable with the KDEPF.  

3.4 Probabilistic Forecasts Using the Johnson Data Transformation 

This section proposes a new way to generate probabilistic forecasts using the 

Johnson data transformation technique [188, 195], called the Johnson data transformation 

probabilistic forecasting (JDTPF) method. The residual binning process of the JDTPF 

method is similar to the other two probabilistic forecasting methods, NDEPF (see Section 

3.2) and KDEPF (see Section 3.3), presented in this dissertation. An illustrative example 

of the residual binning process is explained with a cartoon example in Section 3.2 (see 

Figure 3.8). Once the residual bins are created based on conditionals (temperature, last 

24- hour temperature difference, or difference between current temperature and last 

week’s average temperature), the Johnson transformation can be used to transform non-

normally distributed errors into nearly normally distributed data. Figure 3.15 illustrates a 

high-level work flow diagram of the Johnson Curve Toolbox in MATLAB [199] used in 

this work.  
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Figure 3.15: Use of the Johnson Curve Toolbox to calculate residual CDFs in MATLAB. 

The Johnson Curve is a very powerful and flexible tool to transform non-normal 

distributions into normal distributions based on three families of transformations: 1) 

exponential, 2) logistic, and 3) hyperbolic sine shown in Equations (3.8), (3.9), and 

(3.10), respectively [188, 195, 200]. The Johnson system of distributions (Johnson 

Curves) can be defined by four parameters  , , ,    . The first two parameters  ,   

define the shape of the distribution (like skewness and kurtosis), the third parameter    

denotes the location of the median, and the fourth parameter    indicates the scale of the 

distribution (similar to standard deviation). So, the job of the ‘Johnson Transformation’ 

black box mentioned in Figure 3.15 is to find four transformation parameters  , , ,   

from a given non-normal dataset. In this work, the unbounded Johnson distribution 

function was selected because the maximum (or minimum) forecast error is not known in 

advance.  
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Log-normal (SL): 
 

 
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z


 

  
 
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(3.8)  

Unbounded (SU): 
x

lnz
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
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  . 
(3.9) 

Bounded (SB): 

 1i ;s nh
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                                         

 1 2sinh (x) lwhere, n 1x x       . 

(3.10) 

Johnson’s (1949) original procedure [188] for finding the four transformation 

coefficients is based on moments derived from the given dataset.  In 1952, Draper 

improved the accuracy of the calculation by suggesting an algebraic formula replacing 

the original graphical calculation technique [201]. Wheeler proposed an alternative 

method of fitting a Johnson distribution to data based on quantiles instead of moments in 

1980 [202]. Both methods (moments and quantiles) of fitting Johnson distribution are 

available in the Johnson Curve Toolbox in MATLAB [199] (an earlier version was 

written in FORTRAN [203, 204]). The quantile method is used in this work. Figure 3.16 

shows the performance of the Johnson transformation on a real dataset (forecast errors). 

Other normality tests such as Jarque-Bera, Lilliefors, and Kolmogorov-Smirnov (with 5% 

significance level) are provided also in Table 3.2.  
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Figure 3.16: Normality check of Johnson transformation using qq-plots. 

Table 3.2: Normality tests of a Johnson transformation. 

Normality Tests            
(5% significance level) 

Original Data Transformed Data 
H0: normal      
Ha: non-normal 

p-value H0: normal      
Ha: non-normal 

p-value 

Jarque-Bera test Reject 0.1606 Accept 0.0010 
Lilliefors test Reject 0.5000 Accept 0.0010 
Kolmogorov-Smirnov test Reject 0.8188 Accept 0.0000 

 

The Box-Cox transformation is another well-known data transformation technique 

[205] used for a similar purpose as the Johnson Curve. The Box-Cox transformation is 

easier to understand compared to the Johnson transformation. However, it does not work 

for zero and negative values [206]. On the other hand, the Johnson transformation is 

powerful, flexible, and can work with data including zero and negative values. In this 

dissertation, the data transformation technique is applied to forecasting errors, which are 
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expected to be negative or zero approximately 50% of the time. Thus, the Johnson 

transformation has been chosen over the Box-Cox transformation. 

The ‘Johnson Transformation’ black box shown in Figure 3.15 transforms a non-

normal data into an approximately normal data (see Figure 3.16 and Table 3.2 as an 

example). The next paragraph provides more information about the ‘Johnson 

Transformation’ black box. The z-scores are calculated from the transformed normal 

distribution (see Figure 3.6). The ‘Reverse Johnson Transformation’ black box does the 

reverse transformation of what the ‘Johnson Transformation’ does. Here, the reverse 

Johnson transformation is applied to calculated z-scores to construct the required residual 

CDFs. The residual binning process of the JDTPF method is similar to the NDEPF and 

KDEPF, but the learning CDF part is different (shown in Figure 3.15). However, the full 

flowchart of the residual binning process for the JDTPF method is shown in Figure 3.17 

for a better understanding of the whole scenario.  
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Figure 3.17: Flow chart of the residual binning process using the Johnson data 
transformation. 
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The performance of all three probabilistic forecasting methods (NDEPF, KDEPF, 

and JDTPF) is assessed and compared in Section 4.2 using two new scoring rules, QCS 

and PQCS, presented in the next section. A new evaluation technique is required because 

existing evaluation techniques (see Section 2.3) are complicated and focus more on 

sharpness (see Figure 2.2), which is less important than calibration (see Figure 2.1) in 

practice.    

3.5 A New Evaluation Technique for Probabilistic Forecasts 

This section presents the second major contribution of this dissertation. Forecast 

evaluation techniques are required to assess the effectiveness of forecasts generated by 

probabilistic forecasting engines. Evaluating probabilistic forecasts is as important as 

generating probabilistic forecasts because a good evaluation technique guides researcher 

to produce useful probabilistic forecasts. Hong asserts that, a lack of well-established 

evaluation techniques is one reason for the underdevelopment of probabilistic forecasting 

research [37].  

The concept of a probabilistic forecast is more difficult to understand than the 

concept of a point forecast because the probabilistic forecast presents a complete 

distribution of a future event compared to only one value (50th percentile) offered by a 

point forecast. Hence, a visual representation of a probabilistic forecast is helpful. 

Similarly, the evaluation of a probabilistic forecast should contain two parts (graphical 

and numerical) to make the probabilistic forecast evaluation easier to comprehend. Based 
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on an extensive literature search, no evaluation technique that presents evaluation results 

in both graphical and numerical formats is known. The new evaluation technique 

proposed in this section has both a graphical representation, graphical calibration measure 

(GCM), and two numerical scores, quantile calibration score (QCS) and percentage 

quantile calibration score (PQCS).  

The most popular graphical technique used for evaluating probabilistic forecasts 

is the probability integral transform (PIT) [124]. The PIT is useful to obtain a rough idea 

of the calibration or reliability (see Figure 2.1, subsection 2.2.1) of a probabilistic 

forecast. However, it is difficult to compare two probabilistic forecasting methods using 

PIT applied on the same dataset because they look almost identical. A numeric evaluation 

technique is needed.  

Several scoring rules used to assess probabilistic forecasts are explained in 

Section 2.3. Reliability (see Figure 2.1), sharpness (see Figure 2.2), and resolution 

(variation of the forecast CDF with time) are considered three criteria of a good 

probabilistic forecast [37]. The continuous ranked probability score (CRPS) and the 

pinball loss function are the most used evaluation techniques in the recent probabilistic 

load forecasting literature. Hence, these two scoring rules are included as base-line 

scoring rules to assess probabilistic forecasts with our two scoring rules (QCS and 

PQCS).  

Landry et al. [164] showed an obvious weakness of the pinball score. Landry’s 

probabilistic forecasting method secured the first place in the wind power forecasting 
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track of GEFCom2014 [112] based on the pinball loss function evaluation technique. 

However, the percentage observation column in the Table 3.3 reveals some weaknesses 

of the produced probabilistic forecast (shown in bold). Figure 3.18 shows the graphical 

version of Table 3.3 (which is like our graphical evaluation technique, GCM).  The result 

(in Table 3.3 and Figure 3.18) shows that the probabilistic forecast is left-skewed and 

concentrated in the middle of the distribution (59.5% of the observations are within the 

20th and 50th quantiles, where the expected observation should be 30%). Again, very few 

observations are in the right tail of the distribution (only 7% of the observations are 

between the 60th and 100th quantiles, while 40% was expected). Overall, the probabilistic 

forecast is not well-calibrated. The pinball loss function is biased toward sharp 

probabilistic forecasts. Both the too sharp and less sharp are not useful probabilistic 

forecast in practice. 

Table 3.3: Pinball score and percentage observation of Landry’s wind power probabilistic 
forecasts for the GEFCom2014 (adapted from [164]). 

Quantile range Mean pinball loss % observation % expected 
0.0-0.1 0.0039 6.6% 10% 
0.1-0.2 0.0143 13.9% 10% 
0.2-0.3 0.0265 18.5% 10% 
0.3-0.4 0.0364 21.8% 10% 
0.4-0.5 0.0512 19.2% 10% 
0.5-0.6 0.0597 10.4% 10% 
0.6-0.7 0.0628 6.2% 10% 
0.7-0.8 0.0538 0.7% 10% 
0.8-0.9 0.0676 0.1% 10% 
0.9-1.0 - 0.0% 10% 
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A useful probabilistic forecast is well-calibrated, i.e., the percentage of the total 

observed values is close to the percentage expected. CRPS and other scoring rules have 

similar problems, giving too much importance to high sharpness. In addition, there is no 

graphical version of these scoring rules, which makes them more difficult to understand. 

Our evaluation technique, graphical calibration measure (GCM), has a graphical version 

with two numerical scores (QCS and PQCS), which makes it easier to understand. It 

provides a better score for being close to the percentage expected and penalties for being 

too sharp or less sharp. 

 

Figure 3.18: Performance of the Landry's probabilistic wind power forecasting model 
[164]. 

The flow chart of the graphical calibration measure (GCM) is shown in Figure 

3.19. The GCM divides a forecast CDF into several quantile bins for assessment. The 

total number of quantile bins is calculated from 100 divided by bin width (a user input 



86 

 

between 1 and 100). The default bin width (used in this work) is 10. Hence, the default 

number of quantile bins is 10. The main idea of the GCM is to fill up all quantile bins 

with available observed values and then check the deviation of the quantile bin 

population from expectation. For a well-calibrated probabilistic forecast, the expected 

population (actual values) inside each bin should be approximately the total observed 

values divided by bin width.  

 

Figure 3.19: Flow chart of the graphical calibration measure evaluation technique. 

Figure 3.20 shows a cartoon example of how each observed value is assigned to a 

quantile bin. The graphical calibration measure finds the nearest percentile of a 

forecasted CDF from its corresponding observed value. In the cartoon example, the actual 



87 

 

value is close to the 33rd percentile of the CDF. Now, the observed quantile (33rd) is 

divided by bin width (10) to get the quantile bin index ( 3.3 4   ). Therefore, the 

observe value is the member of the 4th quantile bin. The same process is repeated for each 

observed value to fill up all quantile bins. 

 

Figure 3.20: Finding nearest percentile (%) of a forecasted CDF from an actual flow. 

When the process of assigning each actual value to one of the quantile bins is 

done, the bar chart of quantile bins looks similar to Figure 3.18 (See also Figure 3.21 for 

a sample illustration of GCM on a real dataset). It is expected that all ten quantile bins 

(left side of Figure 3.21) will contain the same number of observations (10% of the total 

observed values). That means that a bar chart representing frequency of observed values 

within all (ten) quantile bins should appear as a uniform distribution.  
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The first and last quantile bins (in the left side of Figure 3.21) may be split into 

two sub-quantile bins (as shown in the right side of Figure 3.21) to observe carefully the 

performance of the probabilistic forecast in the tails of the distribution (extreme 

conditions). All the forecasted CDFs in this dissertation contain 99 values (1% to 99%). 

That means 1% of the actuals are expected to be less than the 1st percentile value of the 

forecasted CDF and more than the 99th percentile value of the forecasted CDF, 

respectively. The red lines in bar charts shown in Figure 3.21 (right side) are the expected 

frequencies for a particular quantile bin. Hence, if the height of the bar is close to the red 

line, it is a better probabilistic forecast. 

 

Figure 3.21: Graphical calibration measure (GCM). 
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Abundant observations in the middle are characteristic of CDFs that are too sharp, 

and fewer observations in the two tails characterize less sharp probabilistic forecasts (see 

Figure 3.22). Both too sharp and less sharp probabilistic forecasts are incorrect in terms 

of forecast uncertainty quantification. Thus, a heavy penalty has been imposed in the 

primary scoring rule QCS presented in the next subsection (3.5.1) for producing too sharp 

or less sharp probabilistic forecasts.  A dataset-independent version of the QCS called 

percentage QCS (PQCS) is presented in Subsection 3.5.2. 

3.5.1 Quantile Calibration Score (QCS) 

 

Figure 3.22: Effect of sharper and less sharper CDF on QCS. 
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If the forecasted CDFs are divided into n quantile bins (in this work, n = 10), 

observed frequencies are calculated by counting the number of observed values within a 

certain quantile range, and the expected frequency is equal to the total number of 

observed values divided by n (assuming quantile bins are equal), then the quantile 

calibration score is 

  2

1

1
 

n

bin

ExpectedFrequency ObservedFrequency
QCS

n ExpectedFrequency


 

. 
(3.11)  

Lower QCS are better. The best possible QCS value is zero. A cartoon scenario is 

created in Figure 3.22 to illustrate the scoring philosophy of the QCS. The original CDF 

is constructed from the KDE probabilistic forecasting method explained in the Section 

3.3. The sharper and less sharper CDFs are created by perturbing the original CDF by 

0.1% . The QCS formula was applied to the three forecasted CDFs (original, too sharp, 

and less sharp) to understand the effect of sharpness and calibration on the QCS. In both 

cases (too sharp or less sharp), the QCS penalizes a forecast CDF heavily for being too 

sharp or less sharp and provides a better score to a correct CDF. The next section 

provides another scoring rule PQCS that is data independent. 

3.5.2 Percentage Quantile Calibration Score (PQCS) 

When scores are compared between two different size datasets, the QCS is not 

useful, because it is the measurement of average error. Errors are more when the dataset 

contains more samples than a smaller size dataset. Thus, a percentile version of the QCS, 
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called percentage quantile calibration score (PQCS) shown in Equation (3.12), is helpful 

in this situation. 

 
 

1

1
%  100

n

bin

ExpectedFrequency ObservedFrequency
PQCS

n ExpectedFrequency


  . 

(3.12)  

The PQCS is used to do unusual day analysis [135] (see Chapter 4), which is 

normally 5% of the more difficult days to forecast. Thus, PQCS are used in this 

dissertation to compare unusual days’ scores with all days’ scores. 

  This chapter presented two main contributions of this dissertation: new methods 

to generate probabilistic forecasts and a new evaluation technique. A competitive point 

forecasting method, which is used to generate probabilistic forecasts in this work is 

explained in Section 3.1. Three new probabilistic forecasting methods such as a 

parametric, a non-parametric, and a semi-parametric method are introduced in Sections 

3.2, 3.3, and 3.4, respectively. The second major contribution of this dissertation, a new 

probabilistic forecast evaluation technique (GCM) with two scoring rules (QCS and 

PQCS) is offered in Section 3.5. The next chapter contains the application of probabilistic 

forecasts in the energy industry (natural gas and electricity) and a performance analysis 

of all proposed methods during normal days as well as unusual days. The GCM and two 

scoring rules (QCS and PQCS) explained in this chapter are applied to assess 

probabilistic forecasts. Comparisons of three probabilistic forecasts also are included. 
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APPLICATION AND ANALYSIS OF PROBABILISTIC FORECASTING 
METHODS 

This chapter applies probabilistic forecasting methods and the evaluation 

techniques proposed in Chapter 3. Two types of real datasets: electricity and natural gas, 

collected from two utilities in the U.S. demonstrate the performance of the probabilistic 

forecasting methods. Evidence of interval forecasts are found in the natural gas industry 

based on conversations with practitioners [2]. These interval forecasts assume normality. 

However, based on an extensive literature review, there is no prior evidence of 

probabilistic forecast uses in the natural gas industry. Thus, showing the application of 

probabilistic forecasts to solve a real problem in the natural gas industry is the third major 

contribution of this dissertation. The performance of the point forecasting method used in 

this dissertation also is analyzed in this chapter. Three variants of each of the three 

probabilistic forecasting methods are compared. Performance analysis of probabilistic 

forecasting methods using forecasted weather data as well as actual weather is presented. 

Unusual days (top 5% difficult days to forecast) analysis for probabilistic forecasts is 

included. A new evaluation technique, graphical calibration measure (GCM), is used to 

evaluate probabilistic forecasts. Two new scoring rules, quantile calibration score (QCS) 

and percentage quantile calibration score (PQCS) introduced in this dissertation (see 

Section 3.5), are used to assess probabilistic forecasts along with two well-known scoring 

rules, pinball score and continuous ranked probability score (CRPS) (see Section 2.3).   
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4.1 Point Forecast Result Analysis  

This section analyzes the performance of the point forecasting method, multiple 

linear regression 3 (MLR3) (see Section 3.1), used in this dissertation to generate 

probabilistic forecasts. Two different datasets (electricity and natural gas) used for this 

research are collected from an electricity distribution company and a natural gas 

distribution company located in the U.S. Weather data used for generating forecasts are 

also collected from those two utility companies. All electricity and natural gas demand 

data are scaled to preserve confidentiality. 

For both electricity and natural gas datasets, 12 years of hourly data are used to 

create seven subsets as shown in Table 4.1. The first subset contains five years of training 

data and the following one year of testing data. The second subset adds one year to the 

previous five years training dataset for creating a new training dataset. Similarly, the third 

to seventh training datasets are built upon the previous training dataset by adding one 

additional year of data. The length of the testing dataset is one year for all seven datasets. 

This strategy is more realistic than using fixed length training datasets because the length 

of the available dataset increases with time in practice, and including more data in the 

training dataset is helpful to improve forecasting performance. In the GasDayTM lab, the 

frequency of receiving new data is around 24 hours. However, creating a new forecasting 

model using additional data is a costly operation. Thus, the GasDayTM lab rebuilds their 

forecasting models once a year. A similar approach is taken in this work to ensure the 

performance analysis of forecasts reflects practice.    
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Data used in this work were detrended using Brown et al.’s detrending algorithm 

[207]. Brown et. al. showed that detrending improves point forecasts. In this work, 

evidence of improvement in probabilistic forecasts was found by using a detrended 

dataset. Thus, detrended datasets are used for both probabilistic electricity and natural gas 

forecasting. 

Table 4.1: Training and testing subsets for the MLR3 method. 

 Year 
1-5 6 7 8 9 10 11 12 

Subset 1 Training Testing  
Subset 2 Training Testing  
Subset 3 Training Testing  
Subset 4 Training Testing  
Subset 5 Training Testing  
Subset 6 Training Testing  
Subset 7 Training Testing 

 

Two popular point forecasting evaluation techniques, mean absolute percentage 

error (MAPE) and root mean squared error (RMSE) [173], are used in this work to 

analyze the performance of both electricity and natural gas point demand forecasts. 

MAPE is helpful to compare the forecasting performance of multiple datasets (or 

utilities) and forecasting models. On the other hand, RMSE is useful to know the average 

forecasting error. If tY  are the observed (actual) values, t̂Y  are the forecasted values at 

time t, and n is the number of instances, then the MAPE and RMSE are given by (4.1) 

and (4.2), respectively.     
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Figure 4.1: A sample electricity demand forecast for a one to 168 hour time horizons. 

Figure 4.1 shows a typical pattern of a week long (168 hours) electricity demand 

actual and forecast loads (using the MLR3 method). In this work, seven subsets (see 

Table 4.1) are used to train seven separate years of point forecasts. Residuals calculated 

from those seven years of point forecasts are used to generate probabilistic forecasts. 

The Kolmogorov-Smirnov (K-S) test checks whether the forecasting results found 

from different subsets are significantly different. The hypothesis (H0) and the alternative 

hypothesis (Ha) for this test are given below.  
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H0: “the forecasts obtained from different subsets in Table 4.1 come from the same 

distribution.”  

Ha: “the forecasts obtained from different subsets in Table 4.1 come from different 

distributions.”  

The statistical test result does not reject the null hypothesis with 5% significance level for 

all 21 pairs of subsets (two subsets are selected at a time from seven subsets). Similar 

results are found for both electricity and natural gas datasets. Thus, it is conclusive that 

forecasts calculated from different subsets (Table 4.1) come from the same distribution. 

Hence, the MAPE calculated from different subsets can be used to train or test 

probabilistic forecasting models discussed in Sections 3.2, 3.3, and 3.4. 

For electric load forecasts, the seven-year average MAPE of the MLR3 method 

(Table 4.2) for 1 hour, 1 day, and 1 week time horizons are 1.3%, 4.8%, and 6.7%, 

respectively. This is comparable to the other two linear regression methods (MLR1 and 

MLR2) discussed in Section 3.1. The performance analysis of MLR1 and MLR2 methods 

are not included in this dissertation because the main focus of this work is to provide 

useful probabilistic forecasting methods and evaluation techniques. The average over the 

seven subsets from one to 168-hour horizon MAPE and RMSE of the point forecasting 

model MLR3 are presented in Figure 4.2. After the first 48 hours, the forecast error 

plateaus.  
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Table 4.2: Yearly MAPE and RMSE of electricity demand forecasts using the MLR3. 

 1-hour horizon  24-hour horizon  168-hour horizon 
MAPE 

(%) 
RMSE 
(MW) 

MAPE 
(%) 

RMSE 
(MW) 

MAPE 
(%) 

RMSE 
(MW) 

2009-10 
(Subset 1) 

1.32 10.59 4.79 39.84 6.92 58.79 

2010-11 
(Subset 2) 

1.32 11.80 4.71 42.45 6.22 56.28 

2011-12 
(Subset 3) 

1.32 10.89 5.07 42.86 6.94 58.07 

2012-13 
(Subset 4) 

1.33 11.41 4.59 38.74 6.23 55.16 

2013-14 
(Subset 5) 

1.25 10.72 4.59 39.28 6.73 56.67 

2014-15 
(Subset 6) 

1.16 9.58 4.87 41.14 6.67 54.10 

2015-16 
(Subset 7) 

1.13 9.00 4.76 39.19 7.06 60.63 

Average 1.26 10.57 4.77 40.50 6.68 57.10 

 

Figure 4.2: Seven year average, one to 168 hour horizon MAPE and RMSE calculated 
from the detrended electricity demand dataset. 
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The same MLR3 method used for electricity load forecasting can be used to 

forecast natural gas demand since both natural gas and electricity demand depend on 

historical weather, seasonality, and historical load. Figure 4.3 shows a typical pattern of a 

week-long hourly natural gas forecasts (using the MLR3 method) and observed natural 

gas flow. The performance of the one week ahead natural gas forecast is not as accurate 

as the electricity demand forecasts because of potential outliers and missing input 

variables in the MLR3 model specific to natural gas demand. In addition, natural gas 

demand is more variable than electricity demand based on two case studies presented in 

this dissertation. However, improving point forecasts is not the main concern of this 

work. When point forecasts are poor, then probabilistic forecasts may be more useful. 

Thus, the same MLR3 method designed for electricity forecasting is used to forecast 

natural gas.  

 

Figure 4.3: A sample week-long hourly natural gas flow point forecasts. 
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Natural gas data processing is done in an analogous manner to that of the 

electricity data processing as shown in Table 4.1. Seven separate years of natural gas 

forecasts are generated from seven subsets. Table 4.3 shows the seven yearly MAPE and 

RMSE of natural gas forecasts for 1 hour, 1 day, and 1-week time horizons using the 

MLR3 method. The average seven-year average MAPE for 1 hour, 1 day, and 1-week 

horizons are 2.7%, 16.9%, and 24.5%, respectively. Figure 4.4 shows a week-long hourly 

MAPE and RMSE of natural gas forecasts. The point forecasts generated in this section 

will be used to generate probabilistic forecasts in the next section. 

Table 4.3: Yearly MAPE and RMSE of natural gas flow forecasts using the MLR3. 

 1-hour horizon 24-hour horizon  168-hour horizon  
MAPE 

(%) 
RMSE 
(MW) 

MAPE 
(%) 

RMSE 
(MW) 

MAPE 
(%) 

RMSE 
(MW) 

2009-10 
(Subset 1) 

2.64 577.98 15.20 2079.95 22.84 2860.30 

2010-11 
(Subset 2) 

2.95 641.59 17.00 2499.81 24.42 3221.53 

2011-12 
(Subset 3) 

2.89 529.96 18.40 2338.60 28.30 3369.06 

2012-13 
(Subset 4) 

2.61 531.48 16.33 2355.30 22.65 3066.01 

2013-14 
(Subset 5) 

2.53 564.40 17.19 2584.00 24.94 3479.79 

2014-15 
(Subset 6) 

2.44 509.86 16.45 2515.53 23.16 3412.81 

2015-16 
(Subset 7) 

2.86 580.88 17.40 2459.41 25.12 3225.90 

Average 2.70 562.31 16.85 2404.66 24.49 3233.63 
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Figure 4.4: Seven years average, one to 168-hour horizon MAPE and RMSE calculated 
from the detrended natural gas flow dataset. 

The MLR3 point forecasting method is used to generate probabilistic forecasts in 

this work for both electricity and natural gas datasets. The next section uses the MLR3 

point forecasts generated in this section as an input to produce probabilistic forecasts. The 

following sections provide weather forecast based probabilistic forecasts and 

performance analysis of probabilistic forecasts during unusual days (top 5% difficult days 

to forecast). 

 

M
A

P
E

 (
%

)

R
M

S
E

 (
M

D
th

)



101 

 

4.2 Probabilistic Forecasting Results  

This section presents probabilistic forecasts generated from three different 

methods (NDEPF, KDEPF, and JDTPF) discussed in Sections 3.2, 3.3, and 3.4, 

respectively. Each of the three methods has three variants (see Equation (3.3) and (3.4), 

Section 3.2). Seven years of electricity demand / natural gas flow data are used for 

training and testing purposes. Historical point forecasting errors required to train 

probabilistic forecasting methods are collected from the MLR3 point forecasts (Section 

4.1). Historical observed weather data is used in this section to generate probabilistic 

forecasts; the next section shows probabilistic forecasts using forecasted weather data. 

Table 4.4 shows the data processing summary for creating training and testing datasets 

for probabilistic forecasts. Two subsets are created to train probabilistic forecasts. The 

first subset contains five years of hourly MLR3 point forecast errors and historical 

temperatures for training probabilistic forecasting models. The second subset contains six 

years of training data. Both subsets have one year of testing data. The evaluation 

techniques explained in Section 3.5 are applied on two years of hourly probabilistic 

forecasts (total 17,520 probabilistic forecasts, excluding leap hours) to assess the 

performance of the new probabilistic forecasting methods. Examples of 24-hour horizon 

probabilistic forecasts are illustrated in this section. 

 

Table 4.4: Data processing for probabilistic forecasts. 

 Year 
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1-5 6 7 8 9 10 11 12 
Subset 1  Training Testing  
Subset 2  Training Testing 

 

Figure 4.5 shows a sample day-long hourly electricity demand forecast using the 

Johnson data transformation probabilistic forecast (JDTPF) method. The kernel density 

estimator probabilistic forecast (KDEPF) method produces similar probabilistic forecasts, 

and the normal distribution estimator probabilistic forecast (NDEPF) method typically 

generates sharper probabilistic forecasts (Figure 2.2) than JDTPF and KDEPF methods 

(not shown in figures). The probabilistic forecast generated for each horizon is a 

cumulative distribution function (CDF), where the 50th quantile can be denoted as the 

point forecast (see inset of Figure 4.5). In this work, 99 quantiles are displayed using 50 

distinct colors. In Figure 4.5, the observed demand is more than the point forecast (50th 

quantile) until 10 P.M. and less than the point forecast afterwards. In the long run, actuals 

are expected to be more than the 50th quantile half of the time and less than the 50th 

quantile half of the time. The electricity demand is less than the 10th quantile (orange 

colored line) for last few hours (7-9 A.M.). If 7-9 A.M. was repeated many times, then 

actual demands are expected to be greater than the 10th quantile 90% of the time and less 

than the 10th quantile 10% of the time.  
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Figure 4.5: A sample day-long hourly electricity demand probabilistic forecasts. 

Probabilistic forecasts generated from the natural gas dataset contain more 

features to analyze than the electricity dataset generated probabilistic forecasts because of 

greater variability in the natural gas dataset. In the natural gas dataset, the highest flow is 

49 times the lowest flow, whereas the highest demand in the electricity dataset is only 

four times the lowest demand. Thus, most of the figures shown in this section to illustrate 

probabilistic forecasts are natural gas probabilistic forecasts. 

S
ca

le
d

 h
ou

rly
 d

em
an

d 
(M

W
)

Q
ua

n
til

e
s



104 

 

 

Figure 4.6: A sample day-long hourly natural gas probabilistic forecast, where actual 
flow swings between the 3rd quantile and the 98th quantile (Date: Dec 28, 2015).  

Figure 4.6 shows a sample natural gas probabilistic forecast, where actual flow 

swings between the 3rd quantile (at 9 A.M.) and 98th quantile (at 2 P.M.). The point 

forecasts are accurate (actual flow is close to the 50th quantile) between 4 P.M. and 7 

P.M. only and inaccurate most of the time horizon due to uncertainty. A probabilistic 

forecast is a helpful tool to quantify the forecast uncertainty. The probabilistic forecast in  

Figure 4.6 is sharp (see Figure 2.2) compared to the one in Figure 4.7, which indicates 

that every probabilistic forecast has a different resolution (forecasted CDF changes with 

time). Resolution is considered as one of the main criteria of good probabilistic forecasts 

[37]. Larger differences between two quantiles (Figure 4.7) mean more uncertainty 

compared to smaller differences between two quantiles (Figure 4.6). It is expected that 

the differences between two quantiles will grow with increasing time horizon because the 

amount of uncertainty typically increases with the length of the time horizon. The 
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uncertainty also comes from weather forecasts and human behavior in addition to the 

time horizon. Thus, it is possible to have sharper CDFs with the increase of the time 

horizon. A fixed difference between any two quantiles over time (no resolution) is 

considered as a poor probabilistic forecast, since it does not capture the variability of the 

uncertainty [37]. 

 

Figure 4.7: A sample day-long hourly probabilistic forecast, where forecasted CDFs are 
less sharp than usual indicates more uncertainty (Date: Apr 18, 2016).  

In Figure 4.8, the observed flow touches the 1st quantile at 5 P.M. It is expected 

that 1% of the time, the actual flow will be below that point, and 99% of the time the 

actual flow will be above that point. The point forecasts are made during the heating 

season (Jan 30 at 10 A.M., 2016), when the largest amount of natural gas is used for 

heating purposes. A large temperature swing (between 250F and 500F) within the last 24 
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hours caused poor point forecasts. However, the probabilistic forecast nicely captures the 

uncertainties involved with the point forecast.   

 

Figure 4.8: A sample day-long hourly natural gas probabilistic forecast which touches the 
1st quantile at 5 P.M., Jan 30, 2016. 

In Figure 4.9, the actual flow is above the 99th quantile for two consecutive hours 

(7 A.M. – 9 A.M.). A sudden sharp drop in temperature from 620F to 290F within a very 

brief period triggered this poor point forecast. In this case, the probabilistic forecast 

seems poor because the actual flow is outside the maximum level of the forecasted CDF 

(99th quantile), but it is not. It is expected that 1% of the time, the actual flow will be 

more than the 99th quantile. Similarly, the actual flow is expected to be less than the 1st 

quantile 1% of the time (Figure 4.10). From a single probabilistic forecast, it is not 

S
ca

le
d

 h
o

u
rl

y 
flo

w
 (

M
D

th
)



107 

 

possible to conclude whether it is a bad or good probabilistic forecast. A series of 

probabilistic forecasts is required for evaluation. The next four subsections (4.2.1, 4.2.2, 

4.2.3, and 4.2.4) present probabilistic forecast evaluation results.  

 

Figure 4.9: A sample day-long hourly natural gas probabilistic forecast where the actual 
flow is outside the 99th quantile for two consecutive hours (7-9 A.M., Feb 28, 2016). 

Figure 4.11 shows another incident where the actual flow crosses the 99th quantile 

(1 P.M. - 4 P.M.). Higher quantiles (51st to 99th quantiles) usually are more important to 

gas controllers than lower quantiles (1st to 49th quantiles), because gas controllers are 

responsible for keeping the actual flow below the contractual maximum flow limit 

(Figure 1.1), which is set before 10 A.M. every day [2]. Lower quantiles also are useful 

to set the daily cumulative minimum flow limit (Figure 1.2). While setting those 

important limits, one should keep in mind that the 1st quantile and the 99th quantile are 
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not the minimum and maximum actual flow boundaries, respectively. 2% of the time, the 

actual flow is expected to be outside these boundaries. 

 

Figure 4.10: A sample day-long hourly natural gas probabilistic forecast where the actual 
flow touches the 1st quantile at 3 P.M., Apr 4, 2016. 

 

Figure 4.11: A sample day-long hourly probabilistic forecast, where the actual flow is 
very close to the 99th quantile for three consecutive hours (2-5 P.M., Nov 27, 2015). 
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The new probabilistic forecast scoring rules, the quantile calibration score (QCS) 

and the percentage quantile calibration score (PQCS) require a series of probabilistic 

forecasts to calculate a score. Thus, 137 groups are created from 17,520 probabilistic 

forecasts, generated from two testing subsets (see Table 4.4). Each of the groups contains 

1200 probabilistic forecasts, and two consecutive groups overlap 90% of their 

probabilistic forecasts (see Figure 4.12). The parameters of creating groups such as the 

number of probabilistic forecasts in a group, and the percentage of overlapping between 

two consecutive groups are changed to try different ways of grouping. Scores obtained 

from grouping probabilistic forecasts in different ways are similar. The QCS and the 

PQCS provided in the next subsection are obtained by averaging QCS and PQCS 

calculated from 137 groups. 

 

Figure 4.12: Grouping for probabilistic forecast evaluation using QCS and PQCS. 
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The rest of this section presents performance analysis of three probabilistic 

forecasting methods (NDEPF, KDEPF, and JDTPF) in three different subsections 

(Sections 4.2.1, 4.2.2, and 4.2.3). Finally, the last subsection (Section 4.2.4) compares the 

performance of the three probabilistic forecasting methods. 

4.2.1 Performance Analysis of the Benchmark Method, NDEPF 

This section presents the performance analysis of the benchmark method, the 

normal distribution estimator probabilistic forecast (NDEPF). Three variants (Section 

3.2) are used to generate probabilistic forecasts using the NDEPF. One to 168 hours (1 

week) horizon probabilistic forecasts have been generated to compare the performance of 

three variants using four probabilistic forecasting scoring rules (Figures 4.13 and 4.14). 

Some sample 24 hour probabilistic forecasts are shown in the previous section. Table 4.5 

(electricity dataset) and Table 4.6 (natural gas dataset) show the performance of the 

NDEPF based on four scoring rules, pinball score, continuous ranked probabilistic score 

(CRPS), quantile calibration score (QCS), and percentage quantile calibration score 

(PQCS) for one hour, one day, and one-week horizons. A lower score is better, and the 

best possible score is zero. The best score among the three variants is highlighted in a 

bold font. Figures 4.13 and 4.14 show one to 168-hour horizon scores calculated from the 

electricity dataset and natural gas dataset, respectively. 
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Table 4.5: Score comparison of three variants of the NDEPF using the electricity dataset. 

 Benchmark method, NDEPF (electricity data) 
Temperature Temperature 

difference 
Weekly temperature 

difference 
Pinball 
score 

1 hour 2.53 2.58 2.57 
24-hour 9.56 10.80 10.85 
168-hour 12.62 15.65 15.45 

CRPS 1 hour 5.00 5.10 5.09 
24-hour 18.93 21.38 21.48 
168-hour 25.00 31.00 30.60 

QCS 1 hour 13.81 16.70 16.35 
24-hour 11.06 19.40 18.87 
168-hour 21.60 30.18 29.99 

PQCS (%) 1 hour 29.16 32.48 32.09 
24-hour 23.49 32.75 31.17 
168-hour 32.45 41.38 40.70 

 

The temperature variant performed better than other two variants (daily 

temperature difference and weekly average temperature difference) for the electricity 

dataset (Figure 4.13). However, weekly temperature difference is a better variant for the 

natural gas dataset (Figure 4.14) considering QCS and PQCS.   



112 

 

 

Figure 4.13: Two years average week-long hourly pinball scores, CRPS, QCS, and PQCS 
for three variants, NDEPF calculated from the electricity dataset. 

The trend in Figure 4.13 shows that the probabilistic forecasting scores increase 

with the time horizon. That means, quantifying probabilistic forecasts is difficult for 

greater time horizons. The pinball score and the CRPS of the natural gas dataset (Table 

4.6) are poor compared to the electricity dataset (Table 4.5), which indicates that these 

two scoring rules produce better probabilistic forecasting scores when point forecasts are 

superior. Pinball score, CRPS, and QCS are dataset dependent. Only PQCS is dataset 

independent, which is helpful to compare the performance of probabilistic forecasts from 

two different datasets or methods. According to the PQCS, probabilistic forecasts made 

from the natural gas dataset are better than those made for the electricity dataset.   
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Table 4.6: Score comparison of three variants of the NDEPF from the natural gas dataset. 

 Benchmark method, NDEPF (natural gas data) 
Temperature Temperature 

difference 
Weekly temperature 

difference 
Pinball 

score 

1 hour 138.50 143.04 142.24 
24-hour 606.47 674.41 680.99 

168-hour 751.24 949.62 941.03 
CRPS 1 hour 274.06 282.97 283.39 

24-hour 1193.82 1312.25 1337.68 
168-hour 1491.22 1948.82 1926.89 

QCS 1 hour 17.21 27.57 27.60 
24-hour 11.83 5.88 6.68 

168-hour 20.75 14.37 14.70 
PQCS 1 hour 32.24 37.69 36.82 

24-hour 25.23 16.43 18.19 
168-hour 32.00 26.75 26.35 

 

The sharp drop of QCS and PQCS for the first few hours (Figure 4.14) can be 

explained from the point forecasting results. Point forecasts for the first three-hour 

horizon are far better than the fourth hour horizon and onwards, because the MLR3 

method uses the first three hours as lag terms (Equation (3.1)). Hence, most of the time, it 

is expected to get sharp probabilistic forecasts (actuals are very close to the 50th quantile, 

between the 40th and the 60th quantiles), which is not good according to QCS and PQCS. 

For a good probabilistic forecast, it is expected that the actual flow will be between the 

40th and the 60th quantiles 20% of the time and outside this region 80% of the time. 
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Figure 4.14: Two years average week-long hourly pinball scores, CRPS, QCS, and PQCS 
for three variants, NDEPF calculated from the natural gas dataset. 

4.2.2 Performance Analysis of the KDEPF Method 

This section shows the performance analysis of the kernel density estimator 

probabilistic forecast (KDEPF) method. Table 4.7 and 4.8 show one hour, one day, and 

one-week horizon scores calculated from the electricity dataset and natural gas dataset, 

respectively. Three variants are used to generate KDEPF. The temperature variant 

provides better performance compared to other variants, especially for the electricity 

dataset (Figure 4.15). However, daily temperature difference shows better performance 

for the natural gas dataset using the QCS and PQCS (Figure 4.16).    
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Table 4.7: Score comparison of three variants of the KDEPF using the electricity dataset. 

 KDEPF method (electricity data) 
Temperature Temperature 

difference 
Weekly temperature 

difference 
Pinball 

score 

1 hour 2.49 2.53 2.53 
24-hour 9.54 10.62 10.75 
168-hour 12.62 15.50 15.30 

CRPS 1 hour 4.93 5.01 5.01 
24-hour 18.90 21.04 21.29 
168-hour 25.00 30.71 30.32 

QCS 1 hour 4.91 5.06 5.51 
24-hour 8.72 13.56 12.94 
168-hour 20.98 26.31 28.48 

PQCS 1 hour 15.98 15.59 16.66 
24-hour 20.54 27.41 26.05 
168-hour 31.22 36.92 39.13 

 

The pinball loss and CRPS for KDEPF illustrate similar patterns as NDEPF. The 

scores rise sharply until the first 24-hour horizon, then they reach plateaus after about the 

48-hour horizon. On the other hand, QCS and PQCS have an increasing trend until the 

168-hour horizon for both electricity (Figure 4.15) and natural gas (Figure 4.16) datasets.    
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Figure 4.15: Two years average week-long hourly pinball scores, CRPS, QCS, and PQCS 
for three variants, KDEPF calculated from the electricity dataset. 

The pinball score, CRPS, and QCS for the electricity dataset is better than the 

natural gas dataset. However, these three scores are dataset dependent. The PQCS 

demonstrates the opposite; natural gas probabilistic forecasts are better, although the 

natural gas point forecasts are poor compared to the electricity point forecasts. When 

point forecasts are relatively bad, then probabilistic forecasts show better performance. 

Hence, probabilistic forecasts compensate the shortcoming of poor point forecasts.  

 

 

P
in

ba
ll 

S
co

re

C
R

P
S

Q
C

S

P
Q

C
S

 (
%

)



117 

 

Table 4.8: Score comparison of three variants of the KDEPF using the natural gas dataset. 

 KDEPF method (natural gas data) 
Temperature Temperature 

difference 
Weekly temperature 

difference 
Pinball 

score 

1 hour 136.28 139.20 139.76 
24-hour 606.40 673.82 681.13 

168-hour 752.03 948.04 939.57 
CRPS 1 hour 269.97 275.74 276.86 

24-hour 1209.21 1316.18 1351.03 
168-hour 1499.88 1940.35 1915.12 

QCS 1 hour 4.27 8.95 9.56 
24-hour 10.19 6.55 6.68 

168-hour 20.41 13.98 14.44 
PQCS 1 hour 14.75 20.96 21.56 

24-hour 23.21 17.26 18.05 
168-hour 31.76 26.16 26.07 

 

In Figure 4.16, the temperature variant performed poorly compared to daily 

temperature difference and weekly average temperature difference using the QCS and 

PQCS. However, the outcome is opposite for the electricity dataset (Figure 4.15). This 

pattern matches with the result found for the NDEPF (Section 4.2.1). High variability of 

natural gas flow due to temperature swings might be the cause. Based on 20 years of 

hourly electricity and natural gas usage data, the highest electricity demand is 

approximately four times the lowest demand, whereas the highest natural gas flow is 49 

times the lowest flow. Thus, the natural gas flow is more susceptible to the temperature 

changes than electricity demand.  
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Figure 4.16: Two years average 168-hour horizon pinball scores, CRPS, QCS, and PQCS 
for three variants, KDEPF calculated from the natural gas dataset. 

The next section presents more comparisons between the three different variants 

using the JDTPF method. 

4.2.3 Performance Analysis of the JDTPF Method 

This section presents week long hourly probabilistic forecasting scores using the 

JDTPF. Comparison among three different variants used in this work are presented in 

Table 4.9, Figure 4.17, Table 4.10, and Figure 4.18. Two different datasets are used: 

electricity and natural gas. Point forecasting errors generated from the MLR3 method are 

used to calculate JDTPF (see Section 4.1). 
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Table 4.9: Score comparison of three variants of the JDTPF using the electricity dataset. 

 JDTPF method (electricity data) 
Temperature Temperature 

difference 
Weekly temperature 

difference 
Pinball 
score 

1 hour 2.49 2.53 2.53 
24-hour 9.54 10.62 10.75 
168-hour 12.62 15.50 15.31 

CRPS 1 hour 4.93 5.01 5.01 
24-hour 18.90 21.04 21.30 
168-hour 25.01 30.72 30.34 

QCS 1 hour 4.22 4.34 4.60 
24-hour 8.57 13.21 12.49 
168-hour 21.26 26.37 28.23 

PQCS 1 hour 14.33 14.24 14.98 
24-hour 20.16 27.01 25.58 
168-hour 31.19 36.69 38.78 

 

Table 4.9 shows 1 hour, 1 day, and 1-week horizon probabilistic forecasting 

scores for the electricity dataset, where the temperature variant has done better than other 

two variants (similar to the NDEPF and the KDEPF). Figure 4.17 demonstrates 1 to 168-

hour horizon probabilistic forecasting scores using the JDTPF. Scores found in this 

section are similar to the KDEPF method (Section 4.2.2).  
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Figure 4.17: Two years average week-long hourly pinball scores, CRPS, QCS, and PQCS 
for three variants, JDTPF calculated from the electricity dataset. 

Table 4.10 shows 1 hour, 1 day, and 1 week horizon natural gas probabilistic 

forecasting scores (pinball scores, CRPS, QCS, and PQCS). Three variants are used 

(similar to the Section 4.2.2) to generate probabilistic forecasts using the JDTPF. The 

temperature binning process is a better variant than the other two variants according to 

the pinball score and CRPS. However, daily temperature difference (Equation (3.3)) and 

weekly average temperature difference (Equation (3.4)) variants outperform the 

temperature variant according to the QCS and PQCS (Figure 4.18).  
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Table 4.10: Score comparison of three variants of the JDTPF using the natural dataset. 

 JDTPF method (natural gas data) 
Temperature Temperature 

difference 
Weekly temperature 

difference 
Pinball 
score 

1 hour 136.25 139.15 139.72 
24-hour 606.49 674.69 681.39 

168-hour 752.29 948.44 940.32 
CRPS 1 hour 269.96 275.71 276.83 

24-hour 1208.69 1315.16 1348.48 
168-hour 1496.56 1934.49 1906.49 

QCS 1 hour 3.93 8.59 9.18 
24-hour 10.02 6.43 6.29 

168-hour 20.34 13.83 14.20 
PQCS 1 hour 14.07 20.76 21.23 

24-hour 23.03 17.20 17.41 
168-hour 31.38 26.02 25.77 

 

The JDTPF method performed slightly better than the KDEPF for both electricity 

and natural gas datasets. However, the improvement is not statistically significant at the 

5% confidence level (using the Kolmogorov-Smirnov test). More comparisons between 

three probabilistic forecasting methods are presented in the next section. Every 

probabilistic forecasting method has three variants. Hence, there are nine different ways 

to generate probabilistic forecasts. However, only the temperature variant is considered 

while comparing between different probabilistic forecasting methods in the next section 

for simplicity. Results obtained from the three variants are similar. In this section, the 

temperature variant outperformed the other two variants most of the time, which is the 

main reason to select the temperature variant for further analysis in the next section.   
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Figure 4.18: Two years average week-long hourly pinball scores, CRPS, QCS, and PQCS 
for three variants, JDTPF calculated from the natural gas dataset. 

4.2.4 Comparisons Among NDEPF, KDEPF, and JDTPF Methods 

This section compares three probabilistic forecasting methods explained in 

Sections 3.2, 3.3, and 3.4. Only the temperature variant (binning process) is used for 

simplicity. The other two variants produce similar results. Figure 4.19 illustrates the 

performance of NDEPF, KDEPF, and JDTPF (generated from the electricity dataset) 

based on the new evaluation technique, graphical calibration measure (GCM) (see 

Section 3.5). 
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Figure 4.19: Performance analysis of (A) NDEPF, (B) KDEPF, and (C) JDTPF methods 
using GCM for one-hour horizon (electricity dataset).  

The NDEPF method produces sharper CDFs than the KDEP and JDTPF methods, 

which is the reason for the big hump in Figure 4.19. The bar graphs show the frequency 

of observed demands within each quantile bin. The red line in the bar chart shows the 

expected height of each bar. Small difference between the frequencies of observed value 

and expected frequency (red line) indicates better probabilistic forecasts and vice versa. It 

is noticeable from Figure 4.19 that the KDEPF and JDTPF methods outperformed the 

NDEPF. The KDEPF and JDTPF look very competitive. QCS or PQCS can be used to 

break the tie. In this example, the JDTPF method (QCS: 31.90) performed better than the 
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(B) KDEPF (QCS: 51.92)
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(C) JDTPF (QCS: 40.34)
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KDEPF method (QCS: 43.92) based on the QCS. Table 4.11 shows 1 hour, 1 day, and 1 

week horizon scores of the three probabilistic forecasting methods. 

Table 4.11: Score comparison of three probabilistic forecasting methods (NDEPF, 
KDEPF, and JDTPF) using the electricity dataset. 

 Probabilistic forecasting methods (electricity data) 

NDEPF KDEPF JDTPF 

Pinball 

score 

1 hour 2.53 2.49 2.49 
24-hour 9.56 9.54 9.54 

168-hour 12.62 12.62 12.62 
CRPS 1 hour 5.00 4.93 4.93 

24-hour 18.93 18.90 18.90 
168-hour 25.00 25.00 25.01 

QCS 1 hour 13.81 4.91 4.22 
24-hour 11.06 8.72 8.57 

168-hour 21.60 20.98 21.26 
PQCS 1 hour 29.16 15.98 14.33 

24-hour 23.49 20.54 20.16 
168-hour 32.45 31.22 31.19 

 

Figure 4.20 compares scores for the three probabilistic forecasting methods 

(NDEPF, KDEPF, and JDTPF) for one to 168-hour horizons using the electricity dataset. 

The pinball score and the CRPS are the same for three probabilistic forecasting methods. 

The zoomed version of the Figure 4.20 (not included in this dissertation) shows tiny 

differences among different scores calculated from the three probabilistic forecasting 

methods, although the difference is not statistically significant at a 5% significance level 

(using the Kolmogorov-Smirnov test). However, KDEPF and JDTPF outperform NDEPF 

based on the QCS and the PQCS for each of 168 horizons.  
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Figure 4.20: Week-long hourly score comparison between the three probabilistic 
forecasting methods (NDEPF, KDEPF, and JDTPF) using the electricity dataset. 

Figure 4.21 compares the three probabilistic forecasting methods using the natural 

gas dataset. Like the electricity dataset, the KDEPF and JDTPF significantly outperform 

NDEPF. For the natural gas dataset, the KDEPF and JDTPF methods even performed 

better than the electricity dataset because there is more variability in the natural gas 

dataset. The NDEPF performed worse than the electricity dataset for the same reason. 
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Figure 4.21: Performance analysis of (A) NDEPF (B) KDEPF, and (C) JDTPF methods 
using GCM for horizon one (natural gas dataset). 

 Table 4.12 displays 1 hour, 1 day, and 1 week horizon probabilistic forecasting 

scores for the natural gas dataset. Bold fonts indicate the best performance between three 

probabilistic forecasting methods. The JDEPF outperformed the other two probabilistic 

forecasting methods most of the time. However, the score difference between the KDEPF 

and JDTPF is not significant with a 5% significance level (using the Kolmogorov-

Smirnov test). The running time of JDTPF is three times faster than the NDEPF, and 

around 1500 times faster than the KDEPF (Table 4.13) for both electricity and natural gas 

datasets.   
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(B) KDEPF (QCS: 14.23)
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(C) JDTPF (QCS: 10.44)
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 Table 4.12: Score comparison of three probabilistic forecasting methods (NDEPF, 
KDEPF, and JDTPF) using the natural dataset. 

 Probabilistic forecasting methods (natural gas data) 
NDEPF KDEPF JDTPF 

Pinball 

score 

1 hour 138.50 136.28 136.25 
24-hour 606.47 606.40 606.49 

168-hour 751.24 752.03 752.29 
CRPS 1 hour 274.06 269.97 269.96 

24-hour 1193.82 1209.21 1208.69 
168-hour 1491.22 1499.88 1496.56 

QCS 1 hour 17.21 4.27 3.93 
24-hour 11.83 10.19 10.02 

168-hour 20.75 20.41 20.34 
PQCS 1 hour 32.24 14.75 14.07 

24-hour 25.23 23.21 23.03 
168-hour 32.00 31.76 31.38 

 

Table 4.13 compares the average running time of the three probabilistic 

forecasting methods. MATLAB 2017a software running on a Windows 7 64-bit machine 

with Intel Core i5 processor Dual Core 3.40 GHz and 8 GB RAM is used in this 

experiment. The JDTPF method takes less than a second to generate 17,520 probabilistic 

forecasts (2 years), whereas the NDEPF method takes less than three minutes, and the 

KDEPF method takes around half an hour (excluding training time).   

Table 4.13: Running time of one horizon probabilistic forecsts using different methods. 

 Probabilistic forecasting methods 
NDEPF KDEPF JDTPF 

Running 
time 

Electricity dataset ~ 1.37 sec ~ 782.31 sec ~ 0.46 sec 
Natural gas dataset ~ 1.51 sec ~ 710.06 sec ~ 0.50 sec 
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Figure 4.22 shows the score comparison between the three probabilistic 

forecasting methods for the 168-hour horizon calculated from the natural gas dataset. The 

pinball score and CRPS are poor compared to the electricity dataset because the natural 

gas dataset contains more variations. However, the QCS and PQCS are better compared 

to the electricity dataset. The NDEPF performed worst among the three probabilistic 

forecasting methods.  

 

Figure 4.22: Week-long hourly score comparison between three probabilistic forecasting 
methods (NDEPF, KDEPF, and JDTPF) using the natural gas dataset. 

Perfect weather data is used to generate point forecasts as well as probabilistic 

forecasts for this section. However, forecasted weather will be used in practice to 

generate probabilistic forecasts. The next section presents sample probabilistic forecasts 

and their scores generated from historical forecasted weather.  
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4.3 Probabilistic Forecast Using Forecasted Weather 

This section shows experimental results of probabilistic forecasts using forecasted 

weather. Only the natural gas dataset is used in this experiment. The electricity dataset 

demonstrates similar outcomes. Twelve years of archived weather forecasts are collected 

from the GasDayTM repository. Figure 4.23 demonstrates hours of the day (0-23), when 

forecasts are made. In the natural gas industry, forecasts are generally made before 10 

A.M. (between 5 and 9 A.M.) most of the time to set hourly maximum flow limits 

(Figure 1.1) and natural gas purchase decisions for the coming 24-hour horizon. After 10 

A.M., forecasts are made for monitoring the situation when the natural gas flow is very 

close to the maximum flow limit. For example, see the large number of forecasts made 

between 9 and 10 P.M. (Figure 4.23) over the long period of time. The forecasted 

weather dataset contains 857 days of multiple forecasts, and 467 days have no forecast 

(missing data). Hence, the quality of the dataset is poor compared to the dataset used in 

the earlier section. However, all three probabilistic forecasting methods (NDEPF, 

KDEPF, and JDTPF) are able to generate reasonable probabilistic forecasts. 
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Figure 4.23: Hours of the day, when point forecasts are made. 

 

Figure 4.24: Yearly frequency of point forecasts (Jul 1, 2004- Jun 30, 2016) 

Figure 4.24 shows the frequency of yearly forecast data available in the dataset. 

The red line indicates on average at least one forecast is available per day for a year. This 

experiment assumes that forecasts made at various times have the same impact on the 
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natural gas flow, which is not true in practice. Missing values are removed from the 

dataset before training forecasting models. No weather forecast was available in the 

GasDayTM repository from Oct 9, 2009 to Jun 11, 2010 and Oct 30, 2012 to Sep 30, 2013 

(see two shortest bars in Figure 4.24). A similar data processing technique explained in 

Sections 4.1 and 4.2 are used to create training and testing subsets for point (Table 4.1) 

and probabilistic forecasts (Table 4.4), respectively. 

Figure 4.25 shows an example day-long hourly probabilistic forecasts generated 

from forecasted weather. In this figure, the forecasted CDFs are sharper than actual 

weather generated forecasts (Section 4.2). Fewer data points are available in the 

forecasted weather dataset than in the previous section, which might be the cause of the 

extra sharpness. It is possible to capture more variability when more data points are 

available in the dataset. Figure 4.26 demonstrates another forecasted weather day-long 

hourly probabilistic forecasts, which has less sharp forecasted CDFs than the one in 

Figure 4.25. The sharpness of forecasted CDFs is different for different seasons, which is 

noticeable in the forecasted weather generated probabilistic forecasts. However, the time 

horizon variability is less pronounced in the forecasted weather generated probabilistic 

forecasts than actual weather generated probabilistic forecasts because very few forecasts 

are available between 10 A.M. and 9 P.M. (Figure 4.23). It is still possible to generate 

probabilistic forecasts from the bad forecasted weather dataset, which validates the 

credibility of the three probabilistic forecasting methods (NDEPF, KDEPF, and JDTPF). 

The JDTPF is used to demonstrate example probabilistic forecasts for this section; other 

methods provide similar results.     
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Figure 4.25: An example day-long hourly probabilistic forecasts generated form 
forecasted weather (Date: Jan 16, 2015) 

 

Figure 4.26: An example day-long hourly probabilistic forecasts generated from 
forecasted weather data (Date: Sep 29, 2014) 
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Figure 4.27 shows the performance of forecasted weather generated probabilistic 

forecast using the graphical calibration measure (GCM) for horizon one. Probabilistic 

forecasts are below the 1% quantile about 5% of the time (expectation was 1%), which is 

not good. Overall, forecasts are biased towards the left. However, the three probabilistic 

forecasting methods explained Sections 3.2, 3.3, and 3.4 are good enough to generate 

probabilistic forecasts from even a bad dataset.  

 

Figure 4.27: Assessment of forecasted weather generated probabilistic forecasts using the 
graphical calibration measure (PQCS: 18.87) 

Probabilistic forecasts are less difficult to make from forecasted weather 

compared to point forecasts. It is shown in the previous section that the probabilistic 

forecast performs even better in the sense of capturing uncertainty, when forecasting 

elements (natural gas or electricity) are more variable.  
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Forecasting unusual days (such as large temperature swings, colder than normal 

days, warmer than normal days, etc.) is comparatively more challenging and more 

important to forecast well than normal days in the natural gas industry. Probabilistic 

forecasts are found useful and add value with point forecasts during those difficult 

forecasting days. The next section presents the performance of probabilistic forecasts 

during unusual days.   

4.4 Unusual Days Analysis for Probabilistic Forecasts 

In the natural gas industry, it is important to forecast well during unusual days 

because unusual days are difficult to predict. Thus, there are more chances to pay larger 

penalties for unusual days if special attention is not given. Vitullo (2011) identified 10 

classes of unusual days [135] for the natural gas industry (see Table 4.14). This section 

compares the performance of three probabilistic forecasting methods (NDEPF, KDEPF, 

and JDTPF) during the top 5% of the unusual days with forecasts for all days. 

Table 4.14: Unusual day types for natural gas forecasts [135]  

Unusual days 
1 Coldest days 2 Colder than normal days 
3 Warmer than normal days 4 Windiest heating days 
5 Colder than yesterday 6 Warmer than yesterday 
7 First cold days 8 First warm days 
9 High humidity heating days 10 Low humidity heating days 
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Figure 4.28: Performance of the NDEPF during unusual days 
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Figure 4.29: Performance of the KDEPF during unusual days 
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Figure 4.30: Performance analysis of the JDTPF during unusual days 
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Figure 4.31: Unusual days PQCS comparison among the three probabilistic forecasting methods 
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Unusual days are usually the top 5% most difficult days to forecast. Hence, each 

unusual day dataset is 20 times smaller (~ 864 probabilistic forecasts) compared to all 

days (17,520 probabilistic forecasts). Thus, only PQCS is applicable to compare between 

all days and unusual days, because the PQCS is data independent. The existing unusual 

day algorithm [135] is designed based on daily data, so it may not work well for hourly 

data. However, it is the only currently available algorithm to find unusual events from 

weather data, and finding unusual hours is out of scope for this dissertation. Thus, 

unusual days are converted to unusual hours by picking all 24 hours of an unusual day. 

Figure 4.28 compares the performance of NDEPF method during the 10 kinds of 

unusual days with its performance on all days. Unusual day forecasts also are 

concentrated in the middle (near to the 50th quantile) like all days. Coldest days 

performed reasonable compared to all days, while first cold days produce worse PQCS 

among all unusual day types. Five out of 10 unusual days performed better than all days 

for the NDEPF.  

Figure 4.29 shows a comparison between performance on unusual days and 

performance on all days based on the PQCS, where performance on all days 

outperformed performance on all 10 unusual days. Performance of probabilistic forecasts 

on warmer than normal days, warmer than yesterday and first cold days are skewed on 

the left, which indicates under-forecast for those unusual days. On the other hand, 

evidence of over-forecasting is found during first warm days. The JDTPF method shows 

similar performance for unusual days on this same dataset. 
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Figure 4.30 shows the graphical calibration measure (GCM) of unusual days 

using the JDTPF method. The performance of probabilistic forecasts during unusual days 

are poor compared to performance on all days. Figure 4.31 compares the performance of 

the three probabilistic forecasting methods (NDEPF, KDEPF, and JDTPF) during 

unusual days. The KDEPF and the JDTPF outperformed NDEPF during unusual days as 

well as all days. The JDTPF performed better than the KDEPF during coldest days, 

colder than normal days, and first cold days. On the other hand, the KDEPF 

outperformed the JDTPF during windiest heating days, and colder than yesterday.       

This chapter showed the results from the MLR3 point forecasting method 

described in Section 4.1. The MLR3 point forecasting method is used to generate 

probabilistic forecasts in this work. The performance analysis of three probabilistic 

forecasting methods, NDEPF, KDEPF, and JDTPF is presented in subsections 4.2.1, 

4.2.2, and 4.2.3, respectively. The performance of three probabilistic forecasting methods 

is compared using four scoring rules (pinball score, CRPS, QCS, and PQCS) in 

Subsection 4.2.4. In Section 4.3, forecasted weather is used to repeat the same 

experiments done in Section 4.2. Finally, in Section 4.4 unusual day (5% most difficult 

days to forecast) analysis is offered for three probabilistic forecasting methods. The next 

chapter summarizes the findings of this dissertation with some proposed future work.    
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CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK 

This chapter presents a summary of the contributions made in this dissertation and 

proposed methods to quantify forecast uncertainties in Section 5.1. Important research 

findings and observations are summarized in Section 5.2. Some ideas to improve the 

presented methods and further research are proposed in Section 5.3. This dissertation 

focuses on quantifying forecast uncertainties with a goal to provide a useful tool for 

natural gas controllers. From an extensive literature review in Chapter 2, no literary 

evidence of probabilistic forecast usage is found in the natural gas industry, although 

informal anecdotal evidence is known. The lack of useful probabilistic forecast 

measuring tools is one of the main reasons why probabilistic forecasts are not frequently 

used in the energy sector [37].  

In this dissertation, several methods are implemented to generate probabilistic 

forecasts through historical point forecast error analysis. A new evaluation technique is 

used to assess probabilistic forecasts. The data flow diagram of generating probabilistic 

forecasts is shown in Figure 5.1. At first, historical weather and flow data are cleaned and 

detrended. Several training and testing datasets are created (see Table 4.1) to generate 

point forecasts. The point forecast errors are analyzed to create a probabilistic forecasting 

engine, which can generate week-long hourly probabilistic forecasts. Finally, 

probabilistic forecasts are evaluated using a newly developed graphical score, GCM. Two 

energy demand datasets (natural gas and electricity) are use in this work as case studies.  
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Figure 5.1: Data flow diagram of generating probabilistic forecast from a raw dataset 

5.1 Contributions 

This dissertation has three main contributions. First, three new methods: normal 

distribution estimator probabilistic forecast (NDEPF), kernel density estimator 

probabilistic forecast (KDEPF), and Johnson data transformation probabilistic forecast 

(JDTPF) are provided in Chapter 3 to produce probabilistic forecasts. Second, a graphical 
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probabilistic forecast measure technique, graphical calibration measure (GCM) is 

presented along with two new metrics, quantile calibration score (QCS) and percentile 

quantile calibration score (PQCS). Finally, probabilistic forecasts are applied in the 

natural gas industry to solve a real-life problem.  

The proposed probabilistic forecasting methods (in Chapter 3) are applied on 

electricity and natural gas datasets to produce probabilistic forecasts. At first, observed 

weather is used to generate probabilistic forecasts, then forecasted weather is used to 

repeat the experiment. A benchmark method, NDEPF, is compared with other 

probabilistic forecasting methods, KDEPF and JDTPF. Currently, the natural gas industry 

is using the standard deviation of historical forecast errors to find the maximum and the 

minimum bound of a given point forecast (interval forecast). The benchmark method is 

an improved version of the existing method. Four scoring rules, pinball loss, CRPS, QCS, 

and PQCS are used to compare three probabilistic forecasting methods. Based on PQCS, 

the KDEPF and JDTPF performed around 13% - 17% better than the benchmark, NDEPF 

for horizon one. Experimental results show that the KDEPF and JDTPF outperform the 

benchmark method, NDEPF for one to 168 hour (1 week) horizons. The three 

probabilistic forecasting methods can generate credible probabilistic forecasts even from 

bad datasets (such as forecasted weather). The unusual day (top 5% difficult days to 

forecast) study demonstrates that, the probabilistic forecasts are more useful during bitter 

cold days, big temperature swings, and shoulder months (November, March). The 

KDEPF and JDTPF method outperform the benchmark, NDEPF during all unusual days 

as well as normal days. Overall, the JDTPF performs slightly better than the KDEPF. 
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However, the improvement is not statistically significant at the 5% level of significance. 

The running time of the JDTPF is around 1500 times faster than the KDEPF, and three 

times faster than the NDEPF. The next section summarizes important research findings 

and observations from this work.   

5.2 Important Research Findings and Observations 

Experimental results show that all three probabilistic forecasting methods 

(NDEPF, KDEPF, and JDTPF) generate credible probabilistic forecasts, even from a bad 

dataset (see Section 4.3). Probabilistic forecast evaluation technique, GCM is helpful to 

diagnose point forecasts during unusual days (see Section 4.4). For example, the MLR3 

method is under-forecasting during cold days and over-forecasting during warm days (see 

Figures 4.29 and 4.30).  

The KDEPF and JDTPF outperformed NDEPF in all situations including all 

unusual days based on four scoring rules (see Section 4.2.4), which indicates that the 

normality assumption of the residual distribution degrades the performance of uncertainty 

quantification. Thus, it is recommended to use the KDEPF or the JDTPF method instead 

of NDEPF method. However, the JDTPF is about 100 times faster than the KDEPF (see 

Table 4.13). So, the JDTPF is recommended. 

When point forecasts are poor (Figures 4.2 and 4.4), the performance of 

probabilistic forecasts is comparatively better (Figures 4.20 and 4.22). Thus, probabilistic 

forecasts can compensate the shortcomings of point forecasts. Probabilistic forecasts 
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provide more information (entire CDF) compared to a point forecast (50th quantile of the 

CDF). Thus, it is a useful tool to the gas controller to make better decisions in crisis 

situations (see Figure 1.1). However, one should keep in mind while using probabilistic 

forecasts that 1% of the time the actual flow is expected to be more than the 99th quantile, 

and 1% of the time the actual flow is anticipated to be lower than the 1st quantile. 

This dissertation offered textual, numeric, and graphical presentation of 

probabilistic forecasts. The graphs are found most useful to communicate probabilistic 

forecasts and its scoring rules with practitioners. Thus, an assortment of colors is used to 

demonstrate probabilistic forecasts. The graphical evaluation technique, GCM, is 

presented along with two numerical scores to assess the performance of probabilistic 

forecasts. It is important to present complex calculations in an uncomplicated way to 

facilitate communication. One of the main goals of this work to find out better ways to 

communicate probabilistic forecasts. Then next section provides some ideas to extend 

this work in future.   

5.3 Recommendation for Future Work 

This research can be improved upon by exploring multi-variate binning 

techniques. In this work, only one variant (temperature, daily temperature difference, or 

weekly temperature difference) is used to create residual bins. Two or three variants can 

be considered at a time to create residual bins. Also, new variants such as heating degree 

days (HDD) or cooling degree days (CDD) can be introduced to create residual bins in 
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the process of generating probabilistic forecasts. A multi-variate binning process adds 

extra complexity to the existing problem. Thus, the main challenge of this method is to 

find an efficient algorithm to train the probabilistic forecast engine. 

In this work, residual bins are created and stored in memory for generating 

probabilistic forecasts. Creating residual bins on the fly (when it is required) can be an 

alternative approach to the existing residual binning process (Figure 3.5). For a given 

temperature (say 650F), an on-the-fly binning process would collect historical residuals of 

a certain temperature range (say 65±20F, i.e., between 630F and 670F) and create a one-

time-use residual CDF. In this approach, historical residuals corresponding to the given 

temperature will be in the middle, which may improve the quality of residual CDFs and 

possibly probabilistic forecasts. In addition, this approach may reduce training time of the 

probabilistic forecasting methods (especially KDEPF, see Table 4.13) significantly. On 

the other hand, testing time will increase a little bit. The main challenge of this method is 

to keep the testing time within a reasonable level.   

Other point forecasting methods such artificial neural networks (ANN), GasDay’s 

dynamic post processor [208] (DPP, ensemble of linear regression and ANN), or deep 

neural networks (DNN) can be used as point forecasts to generate probabilistic forecasts. 

ANN, DPP, and DNN are usually considered better alternatives to linear regression for 

generating point forecasts (Figure 5.2). However, the (positive or negative) effect of 

using improved point forecasting methods on probabilistic forecasts is unknown. Further 

research required to answer this question.   
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Brown et al.’s detrending algorithm [207] is used in this work to improve point 

forecasts. Smoothing [209] further improves point forecasts (Figure 5.2). However, the 

effect of smoothing techniques on probabilistic forecasts is unknown. During large 

temperature swings, forecasted CDFs for two consecutive horizons may be significantly 

different. In this work, two consecutive bins are overlapped to reduce discontinuity. In 

addition to the bin overlapping, a triangular or parabolic smoothing technique can be used 

on probabilistic forecasts to further reduce the effect of big temperature swing between 

two consecutive forecast horizons.   

 

Figure 5.2: MAPE of different point forecasts (electricity dataset) 

Instead of generating probabilistic forecasts from historical residuals, similar 

historical temperature scenarios (Figure 5.3) can be used to generate probabilistic 

forecasts. For instance, if the given temperature for generating probabilistic forecasts is 
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650F, then a search for historical point forecasts for similar temperature (say 65±20F) will 

provide several point forecasts. In addition to the temperature, seasonality can be 

included to reduce the search space. Finally, a CDF (probabilistic forecast) can be 

generated from the historical point forecasts.  

 

Figure 5.3: An example day long hourly temperature scenario generated from historical 
temperatures 

In Section 4.4, unusual hour probabilistic forecasts are selected by the unusual 

days algorithm, because the unusual day for hourly data is not available. Unusual day 

analysis for hourly probabilistic forecasts might be more meaningful if an unusual hour 

algorithm were used. Research needs to be done to identify unusual hours and to explore 

their usefulness. The existing unusual day algorithm finds unusual days considering 

heating season, which is more appropriate for the natural gas industry, and less effective 
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for the electrical industry. A new algorithm is required to find unusual days/hours for the 

electricity industry. 

It is well established that combining individual good point forecasts improves the 

accuracy of point forecast [140, 143, 208]. However, combining probabilistic forecast 

still a new area of research [37]. A naïve method (simple averaging) is applied to 

combine the three probabilistic forecasting methods presented in this dissertation. The 

combined probabilistic forecast could not outperform all individual probabilistic 

forecasts. More research is required to find a better way to combine probabilistic 

forecasts.    

This dissertation focuses on quantifying forecast uncertainty in the energy 

industry. The same probabilistic forecasting methods (NDEPF, KDEPF, and JDTPF) and 

evaluation techniques (GCM, QCS, PQCS) presented in this dissertation can be used in 

other sectors such as health care, meteorology, and economics to quantify forecast 

uncertainties. For example, Amedu, in his master’s essay [210] applied the NDEPF 

method to forecast mosquito age, which is helpful to identify deadly mosquitos carrying 

malaria. He also applied the newly introduced GCM technique to evaluate his 

probabilistic forecasts. A journal paper on Amedu’s essay is in preparation [211]. 
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