S
'

e
|.'

Lol | | |
L] |

\

i\ 4T

\

A

| .
=
|
u

Chapter 11, Testing

e

ener pue ‘sullied ‘TINN Busn
bulisauibu3 8 frem1jos paiueII0-19 190

Outline

+ Terminology + System testing
+ Typesof errors + Function testing
+ Dedling with errors * Structure Testing
- : * Performancetesting
+ Quality assurance vs Testing

_ + Acceptancetesting
+ Component Testing * Installation testing

¢ Unit testing
* [ntegration testing

+ Testing Strategy
¢ Design Patterns & Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

What isthis?

A failure?

Anerror?

A fault?

Need to specify
the desired behavior first!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Erroneous State (“Error”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Algorithmic Fault

and Java

Object-Oriented Software Engineering: Using UML, Patterns,

Bernd Bruegge & Allen H. Dutoit

Mechanical Fault

and Java

Object-Oriented Software Engineering: Using UML, Patterns,

Bernd Bruegge & Allen H. Dutoit

Terminology

+ Rdliability: The measure of success with which the observed
behavior of a system confirms to some specification of its
behavior.

+ Failure: Any deviation of the observed behavior from the
specified behavior.

¢ Error: The system isin a state such that further processing by
the system will lead to afailure.

+ Fault (Bug): The mechanical or algorithmic cause of an error.

There are many different types of errors and different ways how
we can deal with them.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

How do we deal with Errors and Faults?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Verification?

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Bernd Bruegge & Allen H. Dutoit

Modular Redundancy?

Declaring the Bug
as a Feature?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Patching?

12

Object-Oriented Software Engineering: Using UML, Patterns, and Java

Bernd Bruegge & Allen H. Dutoit

Testing?

Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Bernd Bruegge & Allen H. Dutoit

Examples of Faultsand Errors

+ Faultsin the Interface + Mechanical Faults (very
specification hard to find)

+ Mismatch between what the + Documentation does not
client needs and what the match actual conditions or
server offers oper ating procedures

¢ Mismatch between + Errors

reguirements and
Implementation

+ Algorithmic Faults
+ Missing initialization
+ Branching errors (too soon,
too late)

¢ Stressor overload errors
¢ Capacity or boundary errors
¢ Timingerrors

¢ Throughput or performance
errors

¢ Missing test for null

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Dealing with Errors

+ Verification:

+ Assumes hypothetical environment that does not match real
environment

* Proof might be buggy (omitsimportant constraints, ssmply wrong)
+ Modular redundancy:

* Expensive
+ Declaring abug to be a“feature”

+ Bad practice

+ Patching
+ Slows down performance

+ Testing (thislecture)
¢ Testing isnever good enough

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Another View on How to Deal with Errors

s Error prevention (before the system is released):
+ Use good programming methodology to reduce complexity
+ Useversion control to prevent inconsistent system
+ Apply verification to prevent algorithmic bugs

¢ Error detection (while system is running):
¢ Testing: Createfailuresin a planned way
¢ Debugging: Start with an unplanned failures
+ Monitoring: Deliver information about state. Find performance bugs
+ Error recovery (recover from failure once the system is released).
¢ Data base systems (atomic transactions)

¢+ Modular redundancy
* Recovery blocks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Some Observations

+ Itisimpossible to completely test any nontrivial module or any
system
* Theoretical limitations: Halting problem
+ Practial limitations. Prohibitivein time and cost

+ Testing can only show the presence of bugs, not their absence
(Dijkstra)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Testing takes creativity

+ Testing often viewed as dirty work.

+ To develop an effective test, one must have:
+ Detailed understanding of the system
+ Knowledge of thetesting techniques
¢ SKill to apply thesetechniquesin an effective and efficient manner

+ Testing is done best by independent testers

+ \We often develop a certain mental attitude that the program should
In a certain way when in fact it does not.

+ Programmer often stick to the data set that makes the program
work

¢ "Don’t messup my code!"

+ A program often does not work when tried by somebody else.
¢ Don't let thisbethe end-user.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Testing Activities

Test

Integrated Functioning
Subsystems System

niiniiniiiiiionnn | A” teStSby de\/eloper I

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Testing Activities continued

Validated Accepted

stém System
X Acceptance—»

Test

| Tests(?) by user I

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Fault Handling Techniques

[Fault Handling]

T

[Fault Avoidance] [Fault Detection] [Fault TOIGra”CG]

AR

[Atomic][M odular]
Transactions Redundancy

[Design] [Reviews]
M ethodology

[Verification] [Conflguratlon]
M anagement

Debugging
| ntegration [Correctn&ss] [Performance]
Testing ' Debugaing Debugaging

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Quality Assurance encompasses Testing

Quality Assurance }\

Usability Testing]

[Scenario} (Prototype}[Product J
Testing J(_ Testing Testing

N

[Fault Tolerance
—r—

[Atomic J[M odular J
Transactions Redundancy

[Fault Avoidance}

[Configuration}

[Verification
M anagement

[Fault Detection J

[Debugging }

[Ll J T~

Correctness J [Perfor mance}

[Unit][Integration] [System][Debugaing Debugaing

Testing Testing Testing

[Walkthrough] [Inspection]

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Typesof Testing

+ Unit Testing:
¢ Individual subsystem
¢ Carried out by developers

+ Goal: Confirm that subsystemsis correctly coded and carries out the
Intended functionality

+ Integration Testing:

* Groups of subsystems (collection of classes) and eventually the entire
system

¢ Carried out by developers
¢ Goal: Test theinterface among the subsystem

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

23

System Testing

¢ System Testing:
* Theentire system
¢ Carried out by developers

¢ Goal: Determineif the system meetstherequirements (functional
and global)

+ Acceptance Testing:
+ Evaluatesthe system delivered by developers

¢ Carried out by theclient. May involve executing typical
transactionson siteon atrial basis

¢ Goal: Demonstrate that the system meets customer requirements
and isready to use

+ Implementation (Coding) and testing go hand in hand

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Unit Testing

¢ Informal:
¢ Incremental coding

s Static Analysis:
+ Hand execution: Reading the source code
+ Walk-Through (informal presentation to others)
¢ Code Ingpection (formal presentation to others)
¢ Automated Tools checking for
¢ Syntactic and semantic errors
¢ departurefrom coding standards
¢ Dynamic Analysis:
+ Black-box testing (Test the input/output behavior)

+ White-box testing (Test the internal logic of the subsystem or
obj ect)

¢ Data-structure based testing (Data types deter mine test cases)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

25

Black-box Testing

+ Focus: I/O behavior. If for any given input, we can predict the
output, then the module passes the test.

+ Almost alwaysimpossibleto generate all possible inputs (" test
cases')
+ Goal: Reduce number of test cases by equivalence partitioning:
¢ Divideinput conditionsinto equivalence classes

* Choosetest casesfor each equivalence class. (Example: If an object
IS supposed to accept a negative number, testing one negative
number is enough)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Black-box Testing (Continued)

+ Selection of equivalence classes (No rules, only guidelines):

¢ Input isvalid acrossrange of values. Select test casesfrom 3
eguivalence classes:
+ Below therange
¢ Within therange
¢+ Abovetherange

¢ Inputisvalid if it isfrom a discrete set. Select test casesfrom 2
equivalence classes:

+ Valid discretevalue
+ Invalid discrete value
+ Another solution to select only alimited amount of test cases.

+ Get knowledge about the inner workings of the unit being tested =>
white-box testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

White-box Testing

+ Focus. Thoroughness (Coverage). Every statement in the component is
executed at |east once.

+ Four types of white-box testing
¢ Statement Testing
+ Loop Testing
¢ Path Testing
¢ Branch Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

White-box Testing (Continued)

+ Statement Testing (Algebraic Testing): Test single statements
(Choice of operatorsin polynomials, etc)
+ Loop Testing:

+ Cause execution of the loop to be skipped completely. (Exception:
Repeat loops)

+ L oop to be executed exactly once
+ L oop to be executed morethan once

+ Path testing:
+ Makesureall pathsin the program are executed

+ Branch Testing (Conditiona Testing): Make sure that each
possible outcome from a condition is tested at least once

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

White-box Testing Example

FindMean(float Mean, FILE ScoreFile)

{ SumOfScores = 0.0; NumberOfScores = 0; Mean = O;
Read(ScoreFile, Score); /*Read 1In and sum the scores*/
while (! EOF(ScoreFile) {

iIT (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;

}

Read(ScoreFile, Score);
+
/* Compute the mean and print the result */
iIT (NumberOfScores > 0) {
Mean = SumOfScores/NumberOfScores;
printf("'The mean score i1s %f \n", Mean);
} else
printf("’'No scores found in file\n");

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

White-box Testing Example: Determining the Paths

FindMean (FILE ScoreFile)
{ [TToat SumOfScores = 0.0;
int NumberOfScores = 0O; <i>
float Mean=0.0; float Score;
Read(ScoreFile, Score);
@while (! EOF(ScoreFile) {
<:>if (Score > 0.0) {
SumOfScores = SumOfScores + Score;_*_<:>
NumberOfScores++;

@}

Read(ScoreFile, Score); | <§>

}

/* Compute the mean and print the result */
<:>if (NumberOfScores > 0) {
Mean = SumOfScores / NumberOfScores;
printf(* The mean score i1s %f\n”’, Mean);

} else

printf (“No scores found 1In file\n”);<F—<:>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Constructing the Logic Flow Diagram

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

32

Finding the Test Cases

©

/J a (Covered by any data)

2
! (Data set muist contain at least one value)
(Positive score) e(N ative score)

C

(Data set must f\@/g h (Reached if either f or
be empty) eis reached)

. V4 :
(Total score < o_(V/\>] (Total score > 0.0)
& G

% —1

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Comparison of White & Black-box Testing

+ White-box Testing:

+ Potentially infinite number of
paths haveto betested

+ \White-box testing often tests
what isdone, instead of what
should be done

¢ Cannot detect missing use cases

+ Black-box Testing:

+ Potential combinatorical
explosion of test cases (valid &
invalid data)

¢ Often not clear whether the
selected test cases uncover a
particular error

+ Doesnot discover extraneous
use cases (" features')

Bernd Bruegge & Allen H. Dutoit

+ Both types of testing are needed

+ White-box testing and black box
testing are the extreme ends of a
testing continuum.

+ Any choice of test caseliesin
between and depends on the
following:

+ Number of possiblelogical paths
+ Nature of input data
+ Amount of computation

+ Complexity of algorithms and
data structures

Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

The 4 Testing Steps

1. Select what has to be
measured

reguirements

done
+ Codeinspection

Bernd Bruegge & Allen H. Dutoit

¢ Design: tested for cohesion
+ Implementation: Codetests being measur ed

2. Decide how thetesting is 4. Create the test oracle

* Proofs (Design by Contract)
+ Black-box, white box,

3. Develop test cases
* Atest caseisaset of test

+ Analysis. Completeness of data or situationsthat will

be used to exercisethe unit
(code, module, system) being
tested or about the attribute

+ An oracle contains of the
predicted resultsfor a set of
test cases

* Thetest oracle hasto be
written down beforethe

¢ Select integration testing actual testing takes place
strategy (big bang, bottom

up, top down, sandwich)

Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Guidancefor Test Case Salection

o Use analysis knowledge
about functional
requirements (black-box

testing):
¢ Use cases
¢ Expected input data
¢ Invalid input data

+ Usedesign knowledge about
system structure, algorithms,
data structures (white-box
testing):

+ Control structures
¢ Test branches, loops, ...

+ Data structures
¢ Test recordsfields, arrays,

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

+ Use implementation
knowl edge about algorithms;

+ Examples:
¢ Forcedivision by zero

+ Use sequence of test casesfor
Interrupt handler

36

Unit-testing Heuristics

1. Create unit tests as soon as object
design is compl eted:

+ Black-box test: Test theuse
cases & functional model

* \White-box test: Test the
dynamic model

¢ Data-structuretest: Test the
object model

2. Develop the test cases

¢ Goal: Find the minimal
number of test casesto cover
as many pathsaspossible

3. Cross-check the test casesto
eliminate duplicates

¢ Don't waste your time!

Bernd Bruegge & Allen H. Dutoit

4. Desk check your source code
¢ Reducestesting time
5. Create atest harness

¢ Test driversand test stubsare
needed for integration testing

6. Describe the test oracle

¢ Often theresult of thefirst
successfully executed test

7. Execute the test cases
+ Don’t forget regression testing

+ Re-executetest cases every time
a change is made.

8. Compare the results of the test with the
test oracle

+ Automate as much as possible

Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

